
# SPACE ELECTRONICS INC. SPACE PRODUCTS







## **FEATURES:**

- 3-state outputs drive bus lines or buffer memory address registers
- Rad-Pak® radiation-hardened against natural space radiation
- Total dose hardness: 100 krad (Si) typical; dependent upon orbit
- Package:
  - 20-pin Rad-Pak® flat package
- Operating temperature range:
  - -55 °C to 125 °C
- P-N-P inputs reduce DC loading
- Typical V<sub>OLP</sub> (output ground bounce)
  - $< 0.8 \text{ V at V}_{CC} = 3.3 \text{ V, T}_{A} = 25 \text{ °C}$
- ESD protection exceeds 2000 V

## **DESCRIPTION:**

Space Electronics' 54BCT244RP (RP for Rad-Pak®) octal buffers and line drivers features a typical 100 kilorad (Si) total dose tolerance; dependent upon orbit. The 54BCT244RP is organized as two 4-bit drivers with separate output enable  $(\overline{OE})$  inputs. When  $\overline{OE}$  is low, the device passes data from the A inputs to the Y outputs. When  $\overline{OE}$  is high, the outputs are in the high impedance state. Capable of surviving in the space environment, the 54BCT244RP is ideal for satellite, spacecraft and space probe missions. It is available with packaging and screening up to Class S.

54BCT244RP Octal Buffers/Drivers

TABLE 1. 54BCT244RP ABSOLUTE MAXIMUM RATINGS 1

| Parameter                                                             | Symbol          | Мін  | Мах      | Unit |
|-----------------------------------------------------------------------|-----------------|------|----------|------|
| Supply Voltage Range                                                  | V <sub>CC</sub> | -0.5 | 7.0      | V    |
| Input Voltage Range                                                   | V <sub>I</sub>  | -0.5 | 7.0      | V    |
| Voltage Range Applied to any Output in the Disable or Power-Off State | V <sub>0</sub>  | -0.5 | 5.5      | V    |
| Voltage Range Applied to any Output in High State                     | V <sub>0</sub>  | -0.5 | $V_{CC}$ | V    |
| Current Into Any Output in the Low State                              | I <sub>0</sub>  |      | 96       | mA   |
| Total Power Dissipation @ $T_A = +55$ °C <sup>2</sup>                 | $P_{D}$         |      | 651      | mW   |

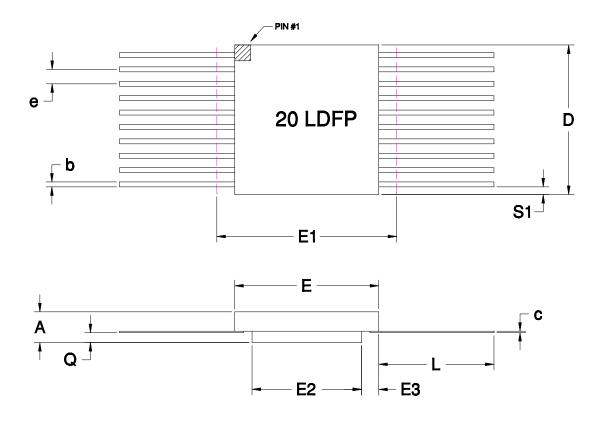
<sup>1.</sup> Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

TABLE 2. 54BCT244RP RECOMMENDED OPERATING CONDITIONS

| Parameter                      | Symbol          | Мін | Мах | Unit |
|--------------------------------|-----------------|-----|-----|------|
| Supply Voltage                 | $V_{CC}$        | 4.5 | 5.5 | V    |
| High-Level Input Voltage       | V <sub>IH</sub> | 2.0 |     | V    |
| Low-Level Input Voltage        | V <sub>IL</sub> |     | 0.8 | V    |
| High-Level Output Current      | I <sub>OH</sub> |     | -12 | mA   |
| Low-Level Output Current       | I <sub>OL</sub> |     | 48  | mA   |
| Input Clamp Current            | I <sub>IK</sub> |     | -18 | mA   |
| Operating Free-Air Temperature | T <sub>A</sub>  | -55 | 125 | oC.  |

 $<sup>2. \</sup>quad \text{Must be able to with stand the additional $P_D$ due to short circuit test, e.g. $I_{DS}$. The $P_D$ number is based upon dc values.}$ 

54BCT244RP Octal Buffers/Drivers


## TABLE 3. 54BCT244RP DC ELECTRICAL CHARACTERISTICS

 $(T_A = -55\,^{\circ}\text{C}$  to  $125\,^{\circ}\text{C}$  , unless otherwise specified)

| Parameter                                                   | Symbol           | TEST CONDITIONS                                                                                        | Min  | Typ 1 | Max  | Unit  |  |
|-------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------|------|-------|------|-------|--|
| High-Level Output Voltage                                   | M                | $I_{OH} = -3 \text{ mA}$                                                                               | 2.4  | 3.3   |      | V     |  |
|                                                             | V <sub>OH</sub>  | $V_{CC} = 4.5 \text{ V}$ $I_{OH} = -12 \text{ mA}$                                                     | 2    | 3.2   |      | •     |  |
| Low-Level Output Voltage                                    | V <sub>OL</sub>  | $V_{CC} = 4.5 \text{ V, } I_{OL} = 48 \text{ mA}$                                                      |      | 0.38  | 0.55 | V     |  |
| Input Clamp Voltage                                         | V <sub>IK</sub>  | $V_{CC} = 4.5 \text{ V, I}_{I} = -18.0 \text{ mA}$                                                     |      |       | -1.2 |       |  |
| Off-State Output Current High-Level Voltage Applied         | I <sub>OZH</sub> | $V_{CC} = 5.5 \text{ V}, \ V_{I} = 2.7 \text{ V}$                                                      |      |       | 50   | μΑ    |  |
| High Level Input Current                                    | I <sub>IH1</sub> | $V_{CC} = 5.5 \text{ V}, \ V_{IN} = 7 \text{ V}$                                                       |      |       | 0.1  | mA    |  |
|                                                             | I <sub>IH2</sub> | $V_{CC} = 5.5 \text{ V}, \ V_{I} = 2.7 \text{ V}$                                                      |      |       | 20   |       |  |
| Low Level Input Current                                     | I <sub>IL</sub>  | $V_{CC} = 5.5 \text{ V}, \ V_{IN} = 0.5 \text{ V}$                                                     |      |       | -1.0 | mA    |  |
| Short-circuit Output Current <sup>2</sup>                   | I <sub>OS</sub>  | $V_{CC} = 5.5 \text{ V}, \ V_0 = 0.0 \text{ V}$                                                        | -100 |       | -225 | mA    |  |
| Supply Current, Outputs High                                | I <sub>CCH</sub> | $V_{CC} = 5.5 \text{ V}$ , Outputs Open                                                                |      | 23    | 40   | mA    |  |
| Supply Current, Outputs Low                                 | I <sub>CCL</sub> | $V_{CC} = 5.5 \text{ V}$ , Outputs Open                                                                |      | 53    | 80   | mA    |  |
| Supply Current, Outputs Disabled to High Impedance<br>State | I <sub>CCZ</sub> | $V_{CC} = 5.5 \text{ V}$ , Outputs Open                                                                |      | 4     | 10   | mA    |  |
| Propagation Delay Time, from An to Yn                       | t <sub>PLH</sub> | $V_{CC} = 4.5 \text{ to } 5.5 \text{ V}  C_L = 50 \text{ pF}$ $R_1 = 500 \ \Omega  R_2 = 500 \ \Omega$ |      |       | 5.3  | ns    |  |
|                                                             | t <sub>PHL</sub> | $T_A = -55 \text{ to } + 125  {}^{\circ}\text{C}$                                                      |      |       | 6    |       |  |
|                                                             | t <sub>PLH</sub> | $V_{CC} = 5.0 \text{ V}$ $C_L = 50 \text{ pF}$<br>$R_1 = 500 \ \Omega$ $R_2 = 500 \ \Omega$            |      | 2.5   | 4.4  | - 113 |  |
|                                                             | t <sub>PHL</sub> | $T_A = +25  {\rm oC}$                                                                                  |      | 3.2   | 5    | 1     |  |
| Output Enable Time, from Gn to Yn                           | t <sub>PZH</sub> | $V_{CC} = 4.5 \text{ to } 5.5 \text{ V}  C_L = 50 \text{ pF}$ $R_1 = 500 \ \Omega  R_2 = 500 \ \Omega$ |      |       | 9    |       |  |
|                                                             | t <sub>PZL</sub> | $T_A = -55 \text{ to } + 125  ^{\circ}\text{C}$                                                        |      |       | 9.4  | nc    |  |
|                                                             | t <sub>PZH</sub> | $V_{CC} = 5.0 \text{ V}  C_L = 50 \text{ pF}$ $R_1 = 500 \ \Omega  R_2 = 500 \ \Omega$                 |      | 5.7   | 7.8  | - ns  |  |
|                                                             | t <sub>PZL</sub> | $T_A = +25  {}^{\circ}\text{C}$                                                                        |      | 5.9   | 8.1  |       |  |
| Output Disable Time                                         | t <sub>PHZ</sub> | $V_{CC} = 4.5 \text{ to } 5.5 \text{ V C}_{L} = 50 \text{ pF}$ $R_1 = 500 \ \Omega R_2 = 500 \ \Omega$ |      |       | 8    |       |  |
|                                                             | t <sub>PLZ</sub> | $T_A = -55 \text{ to } + 125  {}^{\circ}\text{C}$                                                      |      |       | 9.8  | nc    |  |
|                                                             | t <sub>PHZ</sub> | $V_{CC} = 5.0 \text{ V } C_L = 50 \text{ pF}$ $R_1 = 500 \ \Omega R_2 = 500 \ \Omega$                  |      | 5.4   | 6.7  | - ns  |  |
|                                                             | t <sub>PLZ</sub> | T <sub>A</sub> = +25 °C                                                                                |      | 6.1   | 7.6  | 1     |  |

<sup>1.</sup> All typical value are at  $V_{CC} = 5 \text{ V}$ .

<sup>2.</sup> Not more than one output should be shorted at one time and the duration of test shall not exceed one second.



20 PIN FLAT PACKAGE

| Symbol | DIMENSION |       |       |  |  |
|--------|-----------|-------|-------|--|--|
|        | Min       | Nom   | Мах   |  |  |
| А      | 0.128     | 0.141 | 0.154 |  |  |
| b      | 0.015     | 0.017 | 0.022 |  |  |
| С      | 0.003     | 0.005 | 0.009 |  |  |
| D      | 0.470     | 0.480 | 0.490 |  |  |
| E      | 0.287     | 0.295 | 0.303 |  |  |
| E1     |           |       | 0.333 |  |  |
| E2     | 0.155     | 0.160 |       |  |  |
| E3     | 0.030     | 0.068 |       |  |  |
| е      | 0.050BSC  |       |       |  |  |
| L      | 0.370     | 0.380 | 0.390 |  |  |
| Q      | 0.035     | 0.039 | 0.042 |  |  |
| S1     | 0.005     | 0.007 |       |  |  |
| N      | 20        |       |       |  |  |

F20-01 Note: All dimensions in inches

54BCT244RP Octal Buffers/Drivers

### **Important Notice:**

These data sheets are created using the chip manufacturers published specifications. Space Electronics verifies functionality by testing key parameters either by 100% testing, sample testing or characterization.

The specifications presented within these data sheets represent the latest and most accurate information available to date. However, these specifications are subject to change without notice and Space Electronics assumes no responsibility for the use of this information.

Space Electronics' products are not authorized for use as critical components in life support devices or systems without express written approval from Space Electronics.

Any claim against Space Electronics Inc. must be made within 90 days from the date of shipment from Space Electronics. Space Electronics' liability shall be limited to replacement of defective parts.