

503 Vertical Curtain Antenna

TCI's Model 503 family of antennas provides efficient long-haul or sectoral coverage service. The Model 503 is a vertically polarized log-periodic dipole antenna with a narrow, low-angle elevation plane pattern, suitable for medium or long distance coverage. Installation near sea-water or use of an optional ground-screen kit improves low angle coverage. Over average soil the nominal take off angle is 15°, and the pattern provides excellent service from 1100 to 2400 km. With the use of an optional ground-screen kit, service range is extended to approximately 3200 km.

The Model 503 is available in either of two azimuthal beamwidths, 180°, generally used for broadest sectoral coverage and 120°, where a more directive pattern is desired. At the higher frequencies, most frequently used on long paths, the phase center of the structure is elevated, giving increased gain and lower take-off angles. This results in increased signal strength on long paths.

Front-to-back ratio of the Model 503 is especially good (14 dB at 2.5 MHz, 19 dB above 4 MHz on 503-1), reducing the susceptibility of the communications system to interference. VSWR is under 2.0:1.

The Model 503 utilizes a novel structural design, resulting in the smallest and shortest dipole log periodic for a given bandwidth. The feedline is used as a catenary element, greatly reducing the loads transferred by the radiators in severe environments. This

- For sectoral coverage or long distance communications.
- Most gain and bandwidth with given size land area and tower height.
- Higher gain and lower take-off angle at higher frequencies.
- Broad (180°) or narrower (120°) azimuthal variations available.
- No ground screen needed for impedance match.

permits the use of a flatter top catenary, elimination of 'drop rod' material and a shorter tower. The result is a much more compact, economical structure. As in other 500 series antennas, no fiberglass is used in the catenary and support structures. A precisely manufactured, electrically transparent alumoweld structure is used instead.

Specifications

Polarization\	/ertical	
---------------	----------	--

Directive Gain Relative..... Greater than 12 dB

to Isotropic

Azimuth Plane Beam

Width between 120°

Half-Power Points (180° available on special order)

Nominal Take Off Angle15° over average ground

Angle of Half-Power.....UHPP 26°

Points.....LHPP 5° (over average soil)

Level of Side Lobes Relative

to Main Lobes-14 dB

Front to Back Ratio14 dB at low freq. limit

19 dB 20% above lowest rated

frequency

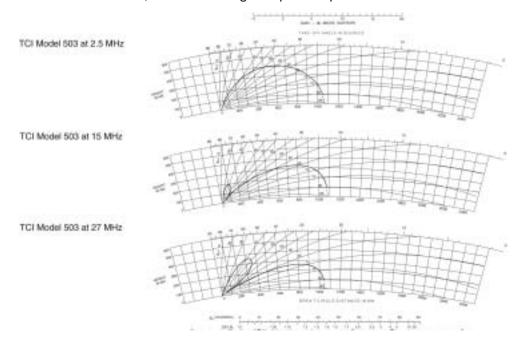
Cross Polarization N/A

Environmental Performance....... Designed in accordance with

EIA Specification RS-222C for loading of 225 km/h (140 mi/h) wind, no ice 145 km/h (90 mi/h) wind, 12mm (1/2") radial ice Optional: 160 km/h (100 mi/h),

no ice

Model Number	Input Impedance	Power Handling Capacity	Connector
501-N-02 501-N-03	50Ω coaxial 50Ω coaxial	Receiving	Type N Female 1-5/8" EIA Female
501-N-03	50 12 COaxiai	10 kW Avg. 50 kW PEP	1-5/6 EIA Female
501-N-04	50 Ω coaxial	25 kW Avg. 50 kW PEP	1-5/8" EIA Female
501-N-06	50 Ω coaxial	1 kW Avg. 2 kW PEP	Type N Female


NOTE: Front support poles, normally class 2, 3, or 4 Douglas Fir, are required but not supplied by TCI. Check with TCI for specific requirements.

Size

Model	Frequency	Height		Length*		Width*	
Number	Range	ft.	mtr.	ft.	mtr.	ft.	mtr.
503-1-N	2.5-30 MHz	205	62	470	143	286	87
503-3-N	5.2-30 MHz	102	31	242	74	140	43
501-3H-N	5.2-30 MHz	102	31	242	74	140	43
503-4-N	3.0-30 MHz	182	55	413	126	260	79
503-5-N	3.6-30 MHz	144	44	332	101	200	61
503-6-N	6.2-30 MHz	90	27	242	74	125	38
503-7-N	2.0-30 MHz	267	81	575	175	381	116
503-10-N	4.0-30 MHz	130	40	327	100	226	69

*measured from extreme guy points

ELEVATION PLANE PATTERN over perfect earth Origin of pattern plot is -5 dB relative to an Isotrope

