$V_{RRM} = 2500 V$

 $I_{FAVM} = 420 A$

 $I_{FSM} = 8.5 \text{ kA}$

 $V_{F0} = 1.7 V$

 $r_F = 0.62 \text{ m}\Omega$

 $V_{DClink} = 1500 V$

Fast Recovery Diode

5SDF 05D2505

Doc. No. 5SYA1114-03 Sep. 01

- · Patented free-floating silicon technology
- · Low on-state and switching losses
- · Optimized for use as freewheeling diode in GTO converters
- Standard press-pack housing, hermetically cold-welded
- · Cosmic radiation withstand rating

Blocking

V_{RRM}	Repetitive peak reverse voltage	2500 V	Half sine wave, $t_P = 10 \text{ ms}$, $f = 50 \text{ Hz}$		
I _{RRM}	Repetitive peak reverse current	≤ 50 mA	$V_R = V_{RRM,} T_j = 125^{\circ}C$		
V_{DClink}	Permanent DC voltage for 100 FIT failure rate	1500 V	100% Duty	Ambient cosmic radiation at sea level in open air.	
V_{DClink}	Permanent DC voltage for 100 FIT failure rate	V	5% Duty		

Mechanical data (see Fig. 12)

ш	Mounting force mir	١.	10 kN
F _m	max	۲.	12 kN
а	Acceleration: Device unclamped Device clamped		50 m/s ² 200 m/s ²
m	Weight		0.25 kg
Ds	Surface creepage distance	≥	30 mm
Da	Air strike distance	≥	20 mm

On-state (see Fig. 2, 3)

I _{FAVM}	Max. average on-state current	420 A	Half sine wave, T _c = 85°C
I _{FRMS}	Max. RMS on-state current	670 A	
I _{FSM}	Max. peak non-repetitive	8.5 kA	tp = 10 ms Before surge:
	surge current	27 kA	tp = 1 ms $T_c = T_j = 125^{\circ}C$
∫l ² dt	Max. surge current integral	0.36·10 ⁶ A ² s	tp = 10 ms After surge:
		0.36·10 ⁶ A ² s	tp = 1 ms $V_R \approx 0 \text{ V}$
V _F	Forward voltage drop	≤ 2.3 V	I _F = 1000 A
V _{F0}	Threshold voltage	1.7 V	Approximation for $T_j = 125$ °C
r _F	Slope resistance	0.62 mΩ	I _F = 5003500 A

Turn-on (see Fig. 4, 5)

V _{fr}	Peak forward recovery voltage	≤	16 V	di/dt = 500 A/µs, T _j = 125°C
-----------------	-------------------------------	----------	------	--

Turn-off (see Fig. 6 to 11)

Irr	Reverse recovery current	≤	470 A	$di/dt = 300 \text{ A/}\mu\text{s}, I_F = 700 \text{ A},$	
Q _{rr}	Reverse recovery charge	≤	840 µC	$T_j = 125^{\circ}C, V_{RM} = 2300 V,$	
Err	Turn-off energy	≤	0.34 J	$C_S = 2\mu F$ (GTO snubber circuit)	

Thermal (see Fig. 1)

Tj	Operating junction temperature range	-40125°C		
T _{stg}	Storage temperature range	-40125°C		
R _{thJC}	Thermal resistance junction to case	≤ 80 K/kW	Anode side cooled	
		≤ 80 K/kW	Cathode side cooled	F _m =
		≤ 40 K/kW	Double side cooled	10 12 kN
R _{thCH}	Thermal resistance case to heatsink	≤ 16 K/kW	Single side cooled	
		≤ 8 K/kW	Double side cooled	

Analytical function for transient thermal impedance.

$$Z_{\text{thJC}}(t) = \sum_{i=1}^{n} R_{i}(1 - e^{-t/\tau_{i}})$$

i	1	2	3	4			
R _i (K/kW) 20.95 10.57 7.15 1.33							
τ _i (s) 0.396 0.072 0.009 0.0044							
F _m = 10 12 kN Double side cooled							

Fig. 1 Transient thermal impedance (junction-to-case) vs. time in analytical and graphical form (max. values).

Fig. 2 Forward current vs. forward voltage (typ. and max. values) and linear approximation of max. curve at 125°C.

Fig. 3 Surge current and fusing integral vs. pulse width (max. values) for non-repetitive, half-sinusoidal surge current pulses.

Fig. 4 Typical forward voltage waveform when the diode is turned on with a high di/dt.

Fig. 5 Forward recovery voltage vs. turn-on di/dt (max. values).

Fig. 6 Typical current and voltage waveforms at turn-off when the diode is connected to an RCD snubber, as often used in GTO circuits.

Fig. 7 Reverse recovery current vs. turn off di/dt (max. values).

Fig. 9 Turn-off energy vs. turn-off di/dt for $I_F = 300$ A (max. values).

Fig. 8 Reverse recovery charge vs. turn off di/dt (max. values).

Fig. 10 Turn-off energy vs. turn-off di/dt for $I_F = 700$ A (max. values).

Fig. 12 Outline drawing. All dimensions are in millimeters and represent nominal values unless stated otherwise.

 $\label{lem:ABB} \textbf{ABB Semiconductors AG reserves the right to change specifications without notice}.$

ABB Semiconductors AG

Fabrikstrasse 3 CH-5600 Lenzburg, Switzerland

Telephone +41 (0)62 888 6419 Fax +41 (0)62 888 6306 Email abbsem@ch.abb.com Internet www.abbsem.com Doc. No. 5SYA1114-03 Sep. 01