$V_{RRM} = 4500 V$

 $I_{FAVM} = 900 A$

 $I_{FSM} = 16 \text{ kA}$

 $V_{F0} = 1.8 V$

 $r_F = 0.9 \text{ m}\Omega$

 $V_{DClink} = 2400 V$

Fast Recovery Diode

5SDF 07H4501

Doc. No. 5SYA1111-02 Sep. 01

- · Patented free-floating silicon technology
- Low switching losses
- Optimized for use as large-area snubber diode in GTO converters
- Industry standard press-pack ceramic housing, hermetically plasma-welded
- · Cosmic radiation withstand rating

Blocking

V_{RRM}	Repetitive peak reverse voltage	4500 V	Half sine wave, $t_P = 10 \text{ ms}$, $f = 50 \text{ Hz}$		
I _{RRM}	Repetitive peak reverse current	≤ 200 mA	$V_R = V_{RRM,} T_j = 125^{\circ}C$		
V_{DClink}	Permanent DC voltage for 100 FIT failure rate	2400 V	100% Duty	Ambient cosmic radiation at sea level in open air.	
V_{DClink}	Permanent DC voltage for 100 FIT failure rate	2800 V	5% Duty		

Mechanical data (see Fig. 8)

_	Mounting force mi	in.	36 kN
F _m	ma	ax.	44 kN
а	Acceleration: Device unclamped Device clamped		50 m/s ² 200 m/s ²
m	Weight		0.83 kg
Ds	Surface creepage distance	≥	≥ 30 mm
Da	Air strike distance	2	≥ 20 mm

On-state (see Fig. 2, 3)

I _{FAVM}	Max. average on-state current	900 A	Half sine wave, $T_c = 85^{\circ}C$		
I _{FRMS}	Max. RMS on-state current	1400 A			
I _{FSM}	Max. peak non-repetitive	16 kA	tp = 10 ms Before surge:		
	surge current	40 kA	tp = 1 ms $T_c = T_j = 125^{\circ}C$		
∫l ² dt	Max. surge current integral	1.28·10 ⁶ A ² s	tp = 10 ms After surge:		
		0.8·10 ⁶ A ² s	tp = 1 ms $V_R \approx 0 \text{ V}$		
V _F	Forward voltage drop	≤ 4.5 V	I _F = 3000 A		
V _{F0}	Threshold voltage	1.8 V	Approximation for $T_j = 125^{\circ}C$		
r _F	Slope resistance	0.9 mΩ	I _F = 5005000 A		

Turn-on (see Fig. 4, 5)

V _{fr}	Peak forward recovery voltage	≤	55 V	di/dt = 500 A/µs, T _j = 125°C
-----------------	-------------------------------	----------	------	--

Turn-off (see Fig. 6, 7)

Irr	Reverse recovery current	≤	260 A	$di/dt = 100 A/\mu s$, $I_F = 1000 A$,	
Q _{rr}	Reverse recovery charge	≤	1700 µC	$T_j = 125^{\circ}C,R_S = 22\Omega, C_S = 0.22\mu F$	

Thermal (see Fig. 1)

Tj	Operating junction temperature range	-40125°C		
T _{stg}	Storage temperature range	-40125°C		
R_{thJC}	Thermal resistance junction to case	≤ 24 K/kW	Anode side cooled	
		≤ 24 K/kW	Cathode side cooled	F _m =
		≤ 12 K/kW	Double side cooled	36 44 kN
R _{thCH}	Thermal resistance case to heatsink	≤ 6 K/kW	Single side cooled	
		≤ 3 K/kW	Double side cooled	

Analytical function for transient thermal impedance.

$$Z_{\text{thJC}}(t) = \sum_{i=1}^{n} R_{i}(1 - e^{-t/\tau_{i}})$$

i	1	2	3	4			
R _i (K/kW)	7.44	2.00	1.84	0.71			
τ _i (s) 0.47 0.091 0.011 0.0047							
F _m = 36 44 kN Double side cooled							

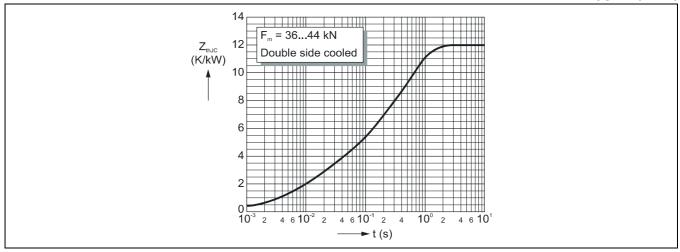


Fig. 1 Transient thermal impedance (junction-to-case) vs. time in analytical and graphical form (max. values).

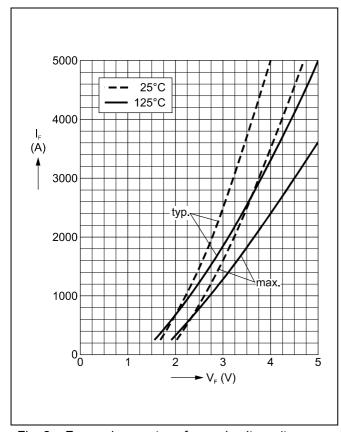


Fig. 2 Forward current vs. forward voltage (typ. and max. values) and linear approximation of max. curve at 125°C.

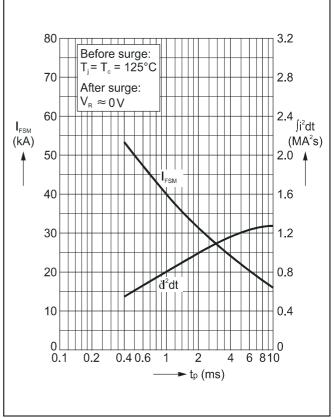


Fig. 3 Surge current and fusing integral vs. pulse width (max. values) for non-repetitive, half-sinusoidal surge current pulses.

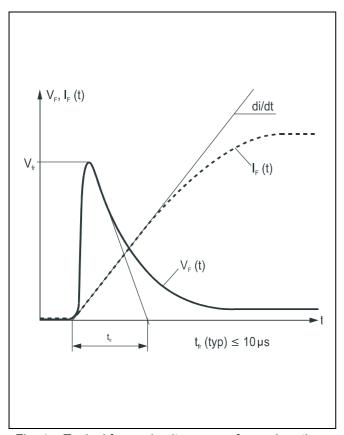


Fig. 4 Typical forward voltage waveform when the diode is turned on with a high di/dt.

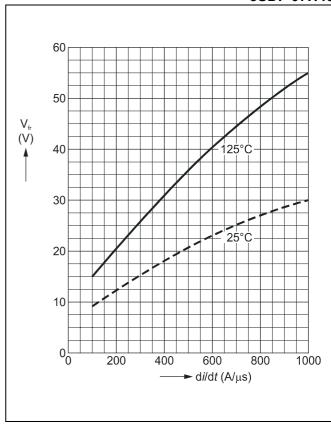


Fig. 5 Forward recovery voltage vs. turn-on di/dt (max. values).

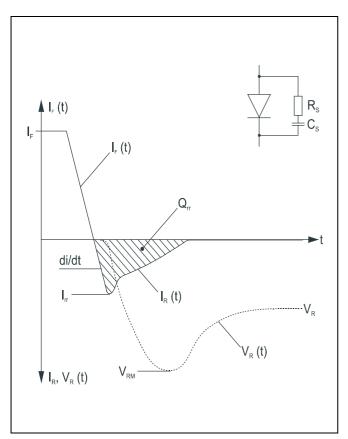


Fig. 6 Typical current and voltage waveforms at turn-off when the diode is connected to an RCD snubber, as often used in GTO circuits.

Fig. 7 Reverse recovery current vs. turn off di/dt (max. values).

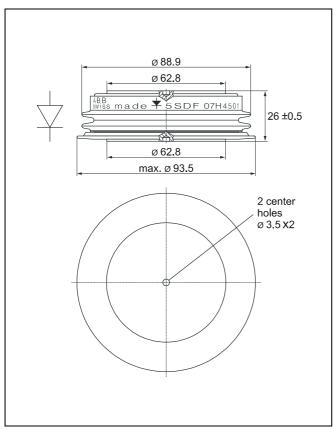


Fig. 8 Outline drawing. All dimensions are in millimeters and represent nominal values unless stated otherwise.

ABB Semiconductors AG reserves the right to change specifications without notice.

ABB Semiconductors AG

Fabrikstrasse 3 CH-5600 Lenzburg, Switzerland

Telephone +41 (0)62 888 6419
Fax +41 (0)62 888 6306
Email abbsem@ch.abb.com
Internet www.abbsem.com

Doc. No. 5SYA1111-02 Sep. 01