Description The 75 Watt single QH series of DC/DC Converters provide precisely regulated dc outputs. All outputs are fully isolated from the inputs, allowing the output to be used with positive or negative polarity and various grounding options. The QH Series meets the most rigorous requirments in an industry standard case size for industrial process control and telecom applications. Standard features include remote sensing, output trim, and remote on/off. Threaded-through holes are provided to allow easy mounting or add a heat sink for extended temperature use. | Selection Chart | | | | | | | |-----------------|--------------------|-----|----------------------|--------------|--------------|--| | Model | Input Range
VDC | | I in
ADC @
nom | V out
VDC | I out
ADC | | | | Min | Max | Тур | | | | | 24\$3.20QH | 18 | 36 | 3.31 | 3.3 | 20 | | | 24S5.15QH | 18 | 36 | 3.63 | 5 | 15 | | | 24S12.6QH | 18 | 36 | 3.59 | 12 | 6.25 | | | 24S15.5QH | 18 | 36 | 3.55 | 15 | 5 | | | 24S24.3QH | 18 | 36 | 3.55 | 24 | 3.13 | | | 48S3.20QH | 36 | 75 | 1.65 | 3.3 | 20 | | | 48S5.15QH | 36 | 75 | 1.80 | 5 | 15 | | | 48S12.6QH | 36 | 75 | 1.78 | 12 | 6.25 | | | 48S15.5QH | 36 | 75 | 1.76 | 15 | 5 | | | 48S24.3QH | 36 | 75 | 1.76 | 24 | 3.13 | | Default ON/OFF logic is positive. Add -N to the model number to order negative ON/OFF logic. #### **Features** - Small size 1.45"x2.28"x0.52", industry standard 1/4 brick - Excellent thermal performance with metal baseplate - High Efficiency - Fast over voltage protection - Pulse-by-pulse current limiting, dead short current limiting - Over-temperature protection - Auto-softstart - Very Low noise - Low profile magnetics run cooler - Constant frequency for normal operation - More than 2:1 input voltage range - Remote Sense with high regulations - Remote ON/OFF - Super energy saving, 6 mA input idle current - Output trim with very low temperature coefficient - Water Washable, wide humidity applications - Good shock and vibration damping - Low cost - 5 Year Warranty Unless otherwise stated, these specifications apply for ambient temperature T_A=23 ±2°C, nominal input voltage, and rated full load. (1) | Input Parameters | | | | | | | | |--|-------------------|-----------|-----------|----------------|-----------|------------------|---------| | Model | | 24S3.20QH | 24S5.15QH | 24S12.6QH | 24S15.5QH | 24S24.3QH | Units | | Voltage Range | MIN
TYP
MAX | | | 18
24
36 | | | VDC | | Input Overvoltage* 100 mSec | MAX | | | 50 | | | VDC | | Input Ripple Rejection (120Hz) | TYP | | | 60 | | | dB | | Undervoltage Lockout | | | | Yes | | | | | Input Reverse Voltage Protect | ion | | | Yes | | | | | Input Current No Load
100% Load | TYP
TYP | 15
3.3 | 15
3.6 | 15
3.6 | 15
3.6 | 15
3.6 | mA
A | | Inrush Current | MAX | 0.2 | | | | A ² S | | | Reflected Ripple, 12µH
Source Impedance (3) | TYP | 10 | | | | mA P-P | | | Efficiency | TYP | 82 | 84 | 86 | 87 | 87 | % | | Switching Frequency | TYP | 360 | | | | kHz | | | Recommended Fuse | | | | (2) | | | AMPS | | Input Parameters | | | | | | | | |--|-------------------|-----------|-----------|----------------|-----------|------------------|---------| | Model | | 48S3.20QH | 48S5.15QH | 48S12.6QH | 48S15.5QH | 48S24.3QH | Units | | Voltage Range | MIN
TYP
MAX | | | 36
48
75 | | • | VDC | | Input Overvoltage* 100 mSec | MAX | | | 85 | | | VDC | | Input Ripple Rejection (120Hz) | TYP | | 60 | | | | | | Undervoltage Lockout | | | | Yes | | | | | Input Reverse Voltage Protect | tion | | | Yes | | | | | Input Current No Load
100% Load | TYP
TYP | 15
1.7 | 15
1.8 | 15
1.8 | 15
1.8 | 15
1.8 | mA
A | | Inrush Current | MAX | 0.2 | | | | A ² S | | | Reflected Ripple, 12µH
Source Impedance (3) | TYP | 10 | | | | mA P-P | | | Efficiency | TYP | 82 | 84 | 86 | 87 | 87 | % | | Switching Frequency | TYP | 360 | | | | kHz | | | Recommended Fuse | | | | (2) | | | AMPS | ^{*} Absolute Maximum Ratings. Caution: Stresses in excess of the Absolute Maximum Ratings can cause permanent damage to the device (see Note 1). Unless otherwise stated, these specifications apply for ambient temperature T_A=23 ±2°C, nominal input voltage, and rated full load. (1) | Output Parameters | | | | | | | | | |---|------------|------------------------|------------------------|------------------------|------------------------|------------------------|--------|--| | Model | | 24S3.20QH
48S3.20QH | 24S5.15QH
48S5.15QH | 24S12.6QH
48S12.6QH | 24S15.5QH
48S15.5QH | 24S24.3QH
48S24.3QH | Units | | | Output Voltage | | 3.3 | 5 | 12 | 15 | 24 | VDC | | | Output Voltage
Setpoint Accuracy | MAX | | ±1 | | | | | | | Turn On Overshoot | TYP | | | 0 | | | % | | | Temperature Coefficient | TYP
MAX | 0.005
0.01 | | | | | | | | Noise (8) | TYP | 20 | 20 | 40 | 50 | 70 | mV RMS | | | Ripple | TYP | 30 | 30 | 75 | 100 | 150 | mV P-P | | | Load Current (4) | MIN
MAX | | 5
100 | | | | | | | Load Transient Overshoot (7) | TYP | | 2 | | | | | | | Load Transient Recovery
Time (6) | TYP | 0.8 | | | | | mSec | | | Load Regulation (5)
Min-Max Load | TYP
MAX | 0.02
0.2 | | | | | % | | | Line Regulation Vin = Min-Max | TYP
MAX | 0.01
0.1 | | | | | % | | | Overvoltage Protection (OVP)
Threshhold
OVP Type - Non-latching
Open Loop Overvoltage
Clamp | MIN
MAX | 115
135 | | | | | % | | | Output Current Limit
V out=90% of V out-nom | TYP | 120 | | | | % | | | | Output Short Circuit Current V out = 0.1 V | TYP
MAX | 150
160 | | | | % | | | #### NOTES: - Refer to the CALEX Application Notes for the definition of terms, measurement circuits, and other information. - Refer to the CALEX Application Notes for information on fusing. For inrush current, refer to the specifications above. - (3) 33 µF capacitor connected to two "Input" pins. Then place current sensor in series with 12 µH inductor between 33 µF and the source. The reflected ripple current is measured over 5 Hz to 20 MHz bandwidth (current sensor is located between the converter input pin and the 12 µH inductor). - (4) Optimum performance is obtained when this power supply is operated within the minimum to maximum load specifications. No damage to module will occur when the output is operated at less than minimum load, but the output voltage may contain a low frequency component that may exceed output noise specifications. - (5) Load regulation is defined as the output voltage change when changing load current from maximum to minimum. The voltage is measured at the output pin. - (6) Load Transient Recovery Time is defined as the time for the output to settle from a 50 to 75% or 25% step load change to a 1% error band of output voltage (rise time of step = 2μ Sec). - Load Transient Overshoot is defined as the peak overshoot during a transient as defined in the Note 6 above. - (8) Noise is measured per the CALEX Application Notes. Output noise is measured with a 10 µF tantalum capacitor in parallel with a 0.1 µF ceramic capacitor connected across the output to CMN. Measurement bandwidth is 0-20 MHz. - When an external On/Off switch is used, such as open collector switch, logic high requires the switch to be high-impedance. Switch leakage currents greater than 20 µA may be sufficient to trigger the On/Off to the logic-low state. - (10) Most switches would be suitable for logic On/Off control, in case there is a problem, you can make following estimation and then leave some margin. - When open collector is used for logic high, "Open Circuit Voltage at On/Off Pin", "Output Resistance" and "External Leakage Current Allowed for Logic High" are used to estimate the high impedance requirement of open collector. - When switch is used for logic low, "Open Circuit Voltage at On/ Off Pin", "Output Resistance" and "LOW Logic Level" are used to estimate the low impedance requirement of switch. - (11) Thermal impedance is tested with the converter mounted vertically and facing another printed circuit board 1/2 inch away. If converter is mounted horizontally with no obstructions, thermal impedance is approximately 10 °C/W. - If heat sink is needed, apply a very thin layer of thermally conductive grease on the metal base of converter, then properly tighten the screws. | General | Spe | cifications | | | | | |--|---|-------------------|--------------|--|--|--| | All Models | | | | | | | | Remote ON/OFF Function | | | | | | | | HIGH Logic Level or Leave ON/OFF Pin Open | MAX | 3.0 | VDC | | | | | External Leakage Current
Allowed for Logic High (9) | MAX | 20 | μA | | | | | Input Diode Protection
Voltage | MAX | 50 | VDC | | | | | LOW Logic Level or Tie ON/OFF Pin to -Input | TYP | 1.0 | VDC | | | | | Sinking Current for Logic
Low | MAX | 1 | mA | | | | | Open Circuit Voltage at Primary ON/OFF Pin (10) Positive Logic Negative Logic Idle Current | TYP
TYP | 5.6
1.5 | VDC
VDC | | | | | (Module is OFF) | TYP | 6 | mADC | | | | | Turn-on Time to 1% error | TYP | 8 | mSec | | | | | Positive Logic Option | HIGH - Module ON
LOW - Module OFF
HIGH - Module OFF | | | | | | | Negative Logic Option | | LOW - Module OF | | | | | | Output Voltage Trim | | | | | | | | Trim Range | MIN
MAX | ±10 | % of
Vout | | | | | Input Resistance | TYP | 10 | k Ohm | | | | | Open Circuit Voltage | TYP | 2.5 | V | | | | | Output Voltage Remote Ser | nsing | | | | | | | Maximum Voltage Drops on Lead | MAX | 0.5 | VDC | | | | | Line Regulation under remote sensing | TYP
MAX | 0.02
0.1 | % | | | | | Load Regulation under remote sensing | TYP
MAX | 0.05
0.2 | % | | | | | Sense and Trim Limit | | | | | | | | Maximum Output Voltage | MAX | 110 | % of
Vout | | | | | Isolation | | | | | | | | Input to Output Isolation* 10μA Leakage Vnom = 24 V models Vnom = 48 V models | MAX
MAX | 700
1544 | VDC
VDC | | | | | Environmental | | | | | | | | Calculated MTBF, Bellcore
Method 1, Case 1 | | >1,000,000 | Hr | | | | | Baseplate Operating
Temperature Range | MIN
MAX | -40
100 | °C | | | | | Storage Temperature | MIN
MAX | -40
120 | °C | | | | | Thermal Impedance (11) Thermal Shutdown | TYP | 9 | °C/W | | | | | Baseplate Temperature (Auto Restart) | MIN
TYP | 100
110 | °C | | | | | General | | | | | | | | Case Dimension | | 2.28" x 1.45" x 0 | .50" | | | | | Agency Approvals Pending | | UL/CUL 6095 | 0 | | | | ^{*} Absolute Maximum Ratings. Caution: Stresses in excess of the Absolute Maximum Ratings can cause permanent damage to the device (see Note 1). | Pin | Function | | | | |-----|----------|--|--|--| | 1 | -INPUT | | | | | 2 | ON/OFF | | | | | 3 | +INPUT | | | | | 4 | -OUTPUT | | | | | 5 | -SENSE | | | | | 6 | TRIM | | | | | 7 | +SENSE | | | | | 8 | +OUTPUT | | | |