4554 Group ### SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER REJ03B0043-0200Z Rev.2.00 Jul 01, 2003 #### **DESCRIPTION** The 4554 Group is a 4-bit single-chip microcomputer designed with CMOS technology. Its CPU is that of the 4500 series using a simple, high-speed instruction set. The computer is equipped with main clock selection function, four 8-bit timers (each timer has one or two reload register), interrupts, and LCD control circuit. The various microcomputers in the 4554 Group include variations of the built-in memory size as shown in the table below. #### **FEATURES** | • Minimum instruction execution time 0.5 μ s | |--| | (at 6 MHz oscillation frequency, in high-speed through-mode) | | Complex soltons | | ●Interrupt | 7 sources | |--|-----------| | ● Key-on wakeup function pins | 10 | | LCD control circuit | | | Segment output | 32 | | Common output | 4 | | ● Voltage drop detection circuit (Reset) | | Watchdog timer Clock generating circuit Main clock (ceramic resonator/RC oscillation/internal ring oscillator) Sub-clock (quartz-crystal oscillation) ● LED drive directly enabled (port D) ### **APPLICATION** Remot control transmitter | Part number | ROM (PROM) size
(X 10 bits) | RAM size
(X 4 bits) | Package | ROM type | | | |-------------------|--------------------------------|------------------------|---------|---------------|--|--| | M34554M8-XXXFP | 8192 words | 512 words | 64P6N-A | Mask ROM | | | | M34554MC-XXXFP | 12288 words | 512 words | 64P6N-A | Mask ROM | | | | M34554EDFP (Note) | 16384 words | 512 words | 64P6N-A | One Time PROM | | | Note: Shipped in blank. #### **PIN CONFIGURATION** Pin configuration (top view) (4554 Group) ### **PERFORMANCE OVERVIEW** | | Paramete | er | Function | | | | | | | | |------------------------------------|------------------|--------------|---|--|--|--|--|--|--|--| | Number of ba | sic instruct | tions | 136 | | | | | | | | | Minimum instruction execution time | | cution time | $0.5~\mu s$ (at 6 MHz oscillation frequency, in high-speed through mode) | | | | | | | | | Memory sizes | ROM | M34554M8 | 8192 words X 10 bits | | | | | | | | | | | M34554MC | 12288 words X 10 bits | | | | | | | | | | | M34554ED | 16384 words X 10 bits | | | | | | | | | | RAM | | 512 words X 4 bits (including LCD display RAM 32 words X 4 bits) | | | | | | | | | Input/Output
ports | D0-D7 | I/O | Eight independent I/O ports. Input is examined by skip decision. The output structure can be switched by software. Port D7 is also used as CNTR0 pin. | | | | | | | | | | D8, D9 | Output | Two independent output ports. Ports D ₈ and D ₉ are also used as INT0 and INT1, respectively. | | | | | | | | | | P00-P03 | I/O | 4-bit I/O port; A pull-up function, a key-on wakeup function and output structure can be switched by software. | | | | | | | | | | P10-P13 | I/O | 4-bit I/O port; A pull-up function, a key-on wakeup function and output structure can be switched by software. | | | | | | | | | | P20-P23 | Input | 4-bit input port; Port P20–P23 are also used as SEG31–SEG28 pins. | | | | | | | | | | P30-P33 | Input | 4-bit input port; Port P30–P33 are also used as SEG27–SEG24 pins. | | | | | | | | | | C Output | | 1-bit output; Port C is also used as CNTR1 pin. | | | | | | | | | Timers | Timer 1 | | 8-bit programmable timer with a reload register and has an event counter. | | | | | | | | | | Timer 2 | | 8-bit programmable timer with a reload register. | | | | | | | | | | Timer 3 | | 8-bit programmable timer with a reload register and has an event counter. | | | | | | | | | | Timer 4 | | 8-bit programmable timer with two reload registers. | | | | | | | | | | Timer 5 | | 16-bit timer, fixed dividing frequency | | | | | | | | | LCD control | Selective | bias value | 1/2, 1/3 bias | | | | | | | | | circuit | Selective | duty value | 2, 3, 4 duty | | | | | | | | | | Common | output | 4 | | | | | | | | | | Segment | output | 32 | | | | | | | | | | Internal re | | 2r X 3, 2r X 2, r X 3, r X 2 (they can be switched by software.) | | | | | | | | | Interrupt | Sources | | 7 (two for external, five for timer) | | | | | | | | | | Nesting | | 1 level | | | | | | | | | Subroutine ne | esting | | 8 levels | | | | | | | | | Device struct | ure | | CMOS silicon gate | | | | | | | | | Package | | | 64-pin plastic molded QFP (64P6N) | | | | | | | | | Operating ten | nperature r | ange | −20 °C to 85 °C | | | | | | | | | Supply | Mask ROM version | | 2 to 5.5 V (It depends on the operation source clock, operation mode and oscillation frequency.) | | | | | | | | | voltage | One Time | PROM version | 2.5 to 5.5 V (It depends on the operation source clock, operation mode and oscillation frequency.) | | | | | | | | | Power | Active mo | ode | 2.8 mA (at room temperature, $VDD = 5 V$, $f(XIN) = 6 MHz$, $f(XCIN) = 32 kHz$, $f(STCK) = f(XIN)$) | | | | | | | | | dissipation | Clock ope | erating mode | 20 μ A (at room temperature, VDD = 5 V, f(XCIN) = 32 kHz) | | | | | | | | | | At RAM b | ack-up | 0.1 μ A (at room temperature, VDD = 5 V) | | | | | | | | ## **PIN DESCRIPTION** | Pin | Name | Input/Output | Function | |--------------------|--|--------------|---| | VDD | Power supply | _ | Connected to a plus power supply. | | Vss | Ground | _ | Connected to a 0 V power supply. | | CNVss | CNVss | _ | Connect CNVss to Vss and apply "L" (0V) to CNVss certainly. | | VDCE | Voltage drop
detection circuit
enable | Input | This pin is used to operate/stop the voltage drop detection circuit. When "H" level is input to this pin, the circuit starts operating. When "L" level is input to this pin, the circuit stops operating. | | RESET | Reset input/output | I/O | An N-channel open-drain I/O pin for a system reset. When the watchdog timer or the voltage drop detection circuit cause the system to be reset, the RESET pin outputs "L" level. | | XIN | Main clock input | Input | I/O pins of the main clock generating circuit. When using a ceramic resonator, connect it between pins XIN and XOUT. A feedback resistor is built-in between them. When using the RC oscillation, connect a resistor and a capacitor to XIN, and leave | | Xout | Main clock output | Output | Xout pin open. | | XCIN | Sub-clock input | Input | I/O pins of the sub-clock generating circuit. Connect a 32 kHz quartz-crystal oscillator | | Хсоит | Sub-clock output | Output | between pins XCIN and XCOUT. A feedback resistor is built-in between them. | | D0-D7 | I/O port D Input is examined by skip decision. | I/O | Each pin of port D has an independent 1-bit wide I/O function. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port D7 is also used as CNTR0 pin. | | D8, D9 | Output port D | Output | Each pin of port D has an independent 1-bit wide output function. The output structure is N-channel open-drain. Ports D8 and D9 are also used as INT0 pin and INT1 pin, respectively. | | P00-P03 | I/O port P0 | I/O | Port P0 serves as a 4-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P0 has a key-on wakeup function and a pull-up function. Both functions can be switched by software. | | P10-P13 | I/O port P1 | I/O | Port P1 serves as a 4-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P1 has a key-on wakeup function and a pull-up function. Both functions can be switched by software. | | P20-P23 | Input port P2 | Input | Port P2 serves as a 4-bit input port. Ports P20–P23 are also used as SEG31–SEG28, respectively. | | P30-P33 | Input port P3 | Input | Port P3 serves as a 4-bit input port. Ports P30–P33 are also used as SEG27–SEG24, respectively. | | Port C | Output port C | Output | 1-bit output port. The output structure is CMOS. Port C is also used as CNTR1 pin. | | COM ₀ – | Common output | Output | LCD common output pins. Pins COMo and COM1 are used at 1/2 duty, pins COM0–COM2 are used at 1/3 duty and pins COM0–COM3 are used at 1/4 duty. | | SEG0-SEG31 | Segment output | Output | LCD segment output pins. SEG0-SEG2 pins are used as VLC3-VLC1 pins, respectively. | | VLC3-VLC1 | LCD power supply | _ | LCD power supply pins. When the internal resistor is used, VDD pin is connected to VLc3 pin (if luminance adjustment is required, VDD pin is connected to VLc3 pin through a resistor). When the external power supply is used, apply the voltage $0 \le VLC1 \le VLC2 \le VLC3 \le VDD$. VLC3–VLC1 pins are used as SEG0–SEG2 pins, respectively. | | CNTR0,
CNTR1 | Timer input/output | I/O | CNTR0 pin has the function to input the clock for the timer 1 event counter, and to output the timer 1 or timer 2 underflow signal divided by 2. CNTR1 pin has the function to input the clock for the timer 3 event counter, and to output the PWM signal generated by timer 4.CNTR0 pin and CNTR1 pin are also used as Ports D7 and C, respectively. | | INTO, INT1 | Interrupt input | Input | INT0 pin and INT1 pin accept external interrupts. They have the key-on wakeup function which can be switched by software. INT0 pin and INT1 pin are also
used as Ports D8 and D9, respectively. | #### **MULTIFUNCTION** | Pin | Multifunction | Pin | Multifunction | Pin | Multifunction | Pin | Multifunction | |------|------------------|------------------|---------------|-----|---------------|-------|---------------| | С | CNTR1 | CNTR1 | С | P20 | SEG31 | SEG31 | P20 | | D7 | CNTR0 | CNTR0 | D7 | P21 | SEG30 | SEG30 | P21 | | D8 | INT0 | INT0 | D8 | P22 | SEG29 | SEG29 | P22 | | D9 | INT1 | INT1 | D9 | P23 | SEG28 | SEG28 | P23 | | VLC3 | SEG ₀ | SEG ₀ | VLC3 | P30 | SEG27 | SEG27 | P30 | | VLC2 | SEG1 | SEG1 | VLC2 | P31 | SEG26 | SEG26 | P31 | | VLC1 | SEG ₂ | SEG ₂ | VLC1 | P32 | SEG25 | SEG25 | P32 | | | | | | P33 | SEG24 | SEG24 | P33 | | | | | | | | | | Notes 1: Pins except above have just single function. - 2: The output of D8 and D9 can be used even when INT0 and INT1 are selected. - 3: The input/output of D7 can be used even when CNTR0 (input) is selected. - 4: The input of D7 can be used even when CNTR0 (output) is selected. - 5: The port C "H" output function can be used even when CNTR1 (output) is selected. ### **DEFINITION OF CLOCK AND CYCLE** Operation source clock The operation source clock is the source clock to operate this product. In this product, the following clocks are used. - Clock (f(XIN)) by the external ceramic resonator - Clock (f(XIN)) by the external RC oscillation - Clock (f(XIN)) by the external input - Clock (f(RING)) of the ring oscillator which is the internal oscillator - Clock (f(XCIN)) by the external quartz-crystal oscillation System clock (STCK) The system clock is the basic clock for controlling this product. The system clock is selected by the clock control register MR shown as the table below. Instruction clock (INSTCK) The instruction clock is the basic clock for controlling CPU. The instruction clock (INSTCK) is a signal derived by dividing the system clock (STCK) by 3. The one instruction clock cycle generates the one machine cycle. Machine cycle The machine cycle is the standard cycle required to execute the instruction. Table Selection of system clock | | Register MR | | | System clock | Operation mode | | | | | | |-----|-------------|--------|-----------------|-----------------------------------|--|--|--|--|--|--| | MR3 | MR2 | MR1 | MR ₀ | | | | | | | | | 0 | 0 | 0 | 0 | f(STCK) = f(XIN) or f(RING) | High-speed through mode | | | | | | | | | 0 or 1 | 1 | f(STCK) = f(XCIN) | Low-speed through mode | | | | | | | 0 | 1 | 0 | 0 | f(STCK) = f(XIN)/2 or f(RING)/2 | High-speed frequency divided by 2 mode | | | | | | | | | 0 or 1 | 1 | f(STCK) = f(XCIN)/2 | Low-speed frequency divided by 2 mode | | | | | | | 1 | 0 | 0 | 0 | f(STCK) = f(XIN)/4 or f(RING)/4 | High-speed frequency divided by 4 mode | | | | | | | | | 0 or 1 | 1 | f(STCK) = f(XCIN)/4 | Low-speed frequency divided by 4 mode | | | | | | | 1 | 1 | 0 | 0 | f(STCK) = f(XIN)/8 or f(RING)/8 | High-speed frequency divided by 8 mode | | | | | | | | | 0 or 1 | 1 | f(STCK) = f(XCIN)/8 | Low-speed frequency divided by 8 mode | | | | | | Note: The f(RING)/8 is selected after system is released from reset. ### PORT FUNCTION | · Oiti | TONCTION | | | | | | | |---------|---------------------|--------|-----------------------|------|--------------|-----------|-------------------------------| | Port | Pin | Input | Output structure | I/O | Control | Control | Remark | | ' ' ' ' | 1 111 | Output | Output structure | unit | instructions | registers | Komark | | Port D | Do-D6, D7/CNTR0 | I/O | N-channel open-drain/ | 1 | SD, RD | FR1, FR2 | Output structure selection | | | | (8) | CMOS | | SZD | W6 | function (programmable) | | | | | | | CLD | | | | | D8/INT0, D9/INT1 | Output | N-channel open-drain | | | l1, l2 | Key-on wakeup function | | | | (2) | | | | K2 | (programmable) | | Port P0 | P00-P03 | I/O | N-channel open-drain/ | 4 | OP0A | FR0 | Built-in programmable pull-up | | | | (4) | CMOS | | IAP0 | PU0 | functions and key-on wakeup | | | | | | | | K0 | functions (programmable) | | Port P1 | P10-P13 | I/O | N-channel open-drain/ | 4 | OP1A | FR0 | Built-in programmable pull-up | | | | (4) | CMOS | | IAP1 | PU1 | functions and key-on wakeup | | | | | | | | K1 | functions (programmable) | | Port P2 | SEG31/P20-SEG28/P23 | Input | | 4 | IAP2 | L3 | | | | | (4) | | | | | | | Port P3 | SEG27/P30-SEG24/P33 | Input | | 4 | IAP3 | L3 | | | | | (4) | | | | | | | Port C | C/CNTR1 | Output | CMOS | 1 | RCP | W4 | | | | | (1) | | | SCP | | | ### **CONNECTIONS OF UNUSED PINS** | Pin | Connection | Usage condition | | | | | | | | |---|-----------------|---|--|--|--|--|--|--|--| | XIN | Connect to Vss. | Internal oscillator is selected (CMCK and CRCK instructions are not executed.) | | | | | | | | | | | (Note 1) | | | | | | | | | | | Sub-clock input is selected for system clock (MR0=1). (Note 2) | | | | | | | | | Xout | Open. | Internal oscillator is selected (CMCK and CRCK instructions are not executed.) | | | | | | | | | | | (Note 1) | | | | | | | | | | | RC oscillator is selected (CRCK instruction is executed) | | | | | | | | | | | External clock input is selected for main clock (CMCK instruction is executed). | | | | | | | | | | | (Note 3) | | | | | | | | | | | Sub-clock input is selected for system clock (MR0=1). (Note 2) | | | | | | | | | XCIN | Connect to Vss. | Sub-clock is not used. | | | | | | | | | Хсоит | Open. | Sub-clock is not used. | | | | | | | | | | | External clock input is selected for sub-clock. | | | | | | | | | D0-D6 | Open. | (Note 4) | | | | | | | | | | Connect to Vss. | N-channel open-drain is selected for the output structure. | | | | | | | | | D7/CNTR0 | Open. | CNTR0 input is not selected for timer 1 count source. | | | | | | | | | | Connect to Vss. | N-channel open-drain is selected for the output structure. | | | | | | | | | D8/INT0 | Open. | "0" is set to output latch. | | | | | | | | | | Connect to Vss. | | | | | | | | | | D9/INT1 | Open. | "0" is set to output latch. | | | | | | | | | | Connect to Vss. | | | | | | | | | | C/CNTR1 | Open. | CNTR1 input is not selected for timer 3 count source. | | | | | | | | | P00-P03 | Open. | The key-on wakeup function is not selected. (Note 4) | | | | | | | | | | Connect to Vss. | N-channel open-drain is selected for the output structure. (Note 5) | | | | | | | | | | | The pull-up function is not selected. (Note 4) | | | | | | | | | | | The key-on wakeup function is not selected. (Note 4) | | | | | | | | | P10-P13 | Open. | The key-on wakeup function is not selected. (Note 4) | | | | | | | | | | Connect to Vss. | N-channel open-drain is selected for the output structure. (Note 5) | | | | | | | | | | | The pull-up function is not selected. (Note 4) | | | | | | | | | | | The key-on wakeup function is not selected. (Note 4) | | | | | | | | | SEG31/P20- | Open. | | | | | | | | | | SEG28/P23 | Connect to Vss. | Ports P20–P23 selected. | | | | | | | | | SEG27/P30- | Open. | | | | | | | | | | SEG24/P33 | Connect to Vss. | Ports P30–P33 selected. | | | | | | | | | СОМо-СОМз | Open. | | | | | | | | | | SEG ₀ /V _L C ₃ | Open. | SEGo pin is selected. | | | | | | | | | SEG1/VLC2 | Open. | SEG1 pin is selected. | | | | | | | | | SEG2/VLC1 | Open. | SEG2 pin is selected. | | | | | | | | | SEG3-SEG23 | Open. | | | | | | | | | Notes 1: When the CMCK and CRCK instructions are not executed, the internal oscillation (ring oscillator) is selected for main clock. - 2: When sub-clock (XCIN) input is selected (MRo = 1) for the system clock by setting "1" to bit 1 (MR1) of clock control register MR, main clock is stopped. - 3: Select the ceramic resonance by executing the CMCK instruction to use the external clock input for the main clock. - 4: Be sure to select the output structure of ports D0–D6 and the pull-up function and key-on wakeup function of P00–P03 and P10–P13 with every one port. Set the corresponding bits of registers for each port. - 5: Be sure to select the output structure of ports P00–P03 and P10–P13 with every two ports. If only one of the two pins is used, leave another one open. (Note when connecting to Vss and VDD) • Connect the unused pins to Vss and VDD using the thickest wire at the shortest distance against noise. Port block diagram (1) Port block diagram (2) Port block diagram (3) Port block diagram (5) Port block diagram (6) Port block diagram (8) # FUNCTION BLOCK OPERATIONS CPU ### (1) Arithmetic logic unit (ALU) The arithmetic logic unit ALU performs 4-bit arithmetic such as 4-bit data addition, comparison, AND operation, OR operation, and bit manipulation. ### (2) Register A and carry flag Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation. Carry flag CY is a 1-bit flag that is set to "1" when there is a carry with the AMC instruction (Figure 1). It is unchanged with both An instruction and AM instruction. The value of Ao is stored in carry flag CY with the RAR instruction (Figure 2). Carry flag CY can be set to "1" with the SC instruction and cleared to "0" with the RC instruction. ### (3) Registers B and E Register B is a 4-bit register used for temporary storage of 4-bit data, and for 8-bit data transfer together with register A. Register E is an 8-bit register. It can be used for 8-bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 3). Register E is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value. ### (4) Register D Register D is a 3-bit register. It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed (Figure 4). Register D is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value. Fig. 1 AMC instruction
execution example Fig. 2 RAR instruction execution example Fig. 3 Registers A, B and register E Fig. 4 TABP p instruction execution example ### (5) Stack registers (SKs) and stack pointer (SP) Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when; - branching to an interrupt service routine (referred to as an interrupt service routine), - performing a subroutine call, or - executing the table reference instruction (TABP p). Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together. The contents of registers SKs are destroyed when 8 levels are exceeded. The register SK nesting level is pointed automatically by 3-bit stack pointer (SP). The contents of the stack pointer (SP) can be transferred to register A with the TASP instruction. Figure 5 shows the stack registers (SKs) structure. Figure 6 shows the example of operation at subroutine call. ### (6) Interrupt stack register (SDP) Interrupt stack register (SDP) is a 1-stage register. When an interrupt occurs, this register (SDP) is used to temporarily store the contents of data pointer, carry flag, skip flag, register A, and register B just before an interrupt until returning to the original routine. Unlike the stack registers (SKs), this register (SDP) is not used when executing the subroutine call instruction and the table reference instruction. ### (7) Skip flag Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions. When an interrupt occurs, the contents of skip flag is stored automatically in the interrupt stack register (SDP) and the skip condition is retained. Stack pointer (SP) points "7" at reset or returning from RAM back-up mode. It points "0" by executing the first BM instruction, and the contents of program counter is stored in SK0. When the BM instruction is executed after eight stack registers are used ((SP) = 7), (SP) = 0 and the contents of SK0 is destroyed. Fig. 5 Stack registers (SKs) structure Fig. 6 Example of operation at subroutine call ### (8) Program counter (PC) Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed. Program counter consists of PCH (most significant bit to bit 7) which specifies to a ROM page and PCL (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 7). Make sure that the PCH does not specify after the last page of the built-in ROM. ### (9) Data pointer (DP) Data pointer (DP) is used to specify a RAM address and consists of registers Z, X, and Y. Register Z specifies a RAM file group, register X specifies a file, and register Y specifies a RAM digit (Figure 8). Register Y is also used to specify the port D bit position. When using port D, set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure 9). #### Note Register Z of data pointer is undefined after system is released from reset Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers. Fig. 7 Program counter (PC) structure Fig. 8 Data pointer (DP) structure Fig. 9 SD instruction execution example ### PROGRAM MEMORY (ROM) The program memory is a mask ROM. 1 word of ROM is composed of 10 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127). Table 1 shows the ROM size and pages. Figure 10 shows the ROM map of M34554ED. Table 1 ROM size and pages | Part number | ROM (PROM) size
(X 10 bits) | Pages | | | | | | |-------------|--------------------------------|----------------|--|--|--|--|--| | M34554M8 | 8192 words | 64 (0 to 63) | | | | | | | M34554MC | 12288 words | 96 (0 to 95) | | | | | | | M34554ED | 16384 words | 128 (0 to 127) | | | | | | Note: Data in pages 64 to 127 can be referred with the TABP p instruction after the SBK instruction is executed. Data in pages 0 to 63 can be referred with the TABP p instruction after the RBK instruction is executed. A part of page 1 (addresses 008016 to 00FF16) is reserved for interrupt addresses (Figure 11). When an interrupt occurs, the address (interrupt address) corresponding to each interrupt is set in the program counter, and the instruction at the interrupt address is executed. When using an interrupt service routine, write the instruction generating the branch to that routine at an interrupt address. Page 2 (addresses 010016 to 017F16) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1-word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction when it starts on page 2. ROM pattern (bits 7 to 0) of all addresses can be used as data areas with the TABP p instruction. Fig. 10 ROM map of M34554ED Fig. 11 Page 1 (addresses 008016 to 00FF16) structure ### **DATA MEMORY (RAM)** 1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the SB j, RB j, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers Z, X, and Y. Set a value to the data pointer certainly when executing an instruction to access RAM (also, set a value after system returns from RAM back-up). RAM includes the area for LCD. When writing "1" to a bit corresponding to displayed segment, the segment is turned on. Table 2 shows the RAM size. Figure 12 shows the RAM map. #### • Note Register Z of data pointer is undefined after system is released from reset. Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers. Table 2 RAM size | Part number | RAM size | |-------------|--------------------------------| | M34554M8 | 512 words X 4 bits (2048 bits) | | M34554MC | 512 words X 4 bits (2048 bits) | | M34554ED | 512 words X 4 bits (2048 bits) | RAM 512 words X 4 bits (2048 bits) | | Register Z | 0 | | | | | | | | | 1 | | | | | | | | | |------------|------------|---|---|---|---|--|----|----|----|----|---|---|---|--|----|----|----|----|----| | | Register X | 0 | 1 | 2 | 3 | | 12 | 13 | 14 | 15 | 0 | 1 | 2 | | 11 | 12 | 13 | 14 | 15 | | | 0 | 1 | 2 | 3 | 4 | 5 | <u>}</u> | 6 | ster | 7 | Register Y | 8 | | | | | | | | | | | | | | | 0 | 8 | 16 | 24 | | 2 | 9 | | | | | | | | | | | | | | | 1 | 9 | 17 | 25 | | | 10 | | | | | | | | | | | | | | | 2 | 10 | 18 | 26 | | | 11 | | | | | | | | | | | | | | | 3 | 11 | 19 | | | | 12 | | | | | | | | | | | | | | | 4 | 12 | 20 | 28 | | | 13 | | | | | | | | | | | | | | | 5 | 13 | 21 | | | | 14 | | | | | | | | | | | | | | | 6 | 14 | 22 | 30 | | | 15 | | | | | | | | | | | | | | | 7 | 15 | 23 | 31 | Note: The numbers in the shaded area indicate the corresponding segment output pin numbers. Fig. 12 RAM map #### INTERRUPT FUNCTION The interrupt type is a vectored interrupt branching to an individual address (interrupt address) according to each interrupt source. An interrupt occurs when the following 3 conditions are satisfied. - An interrupt activated condition is satisfied (request flag = "1") - Interrupt enable bit is enabled ("1") - Interrupt enable flag is enabled (INTE = "1") Table 3 shows interrupt sources. (Refer to each interrupt request flag for details of activated conditions.) ### (1) Interrupt enable flag (INTE) The interrupt enable flag (INTE) controls whether the every interrupt enable/disable. Interrupts are enabled when INTE flag is set to "1" with the EI instruction and disabled when INTE flag is cleared to "0" with the DI instruction. When any interrupt occurs, the INTE flag is automatically cleared to "0," so that other interrupts are disabled until the EI instruction is executed. ### (2) Interrupt enable bit Use an interrupt enable bit of interrupt control registers V1 and V2 to select the corresponding interrupt or skip instruction. Table 4 shows the interrupt request flag, interrupt enable bit and skip instruction. Table 5 shows the interrupt enable bit function. ### (3) Interrupt request flag When the activated condition for each interrupt is satisfied, the corresponding interrupt request flag is set to "1." Each interrupt request flag is cleared to "0" when either; - an interrupt occurs, or - the next instruction is skipped with a skip instruction. Each interrupt request flag is set when the activated condition is satisfied even if the interrupt is disabled by the INTE flag or its interrupt enable bit. Once set, the interrupt request flag retains set until a clear condition is satisfied. Accordingly, an interrupt occurs when the interrupt disable state is released while the interrupt request flag is set. If more than one interrupt request flag is set when the interrupt disable state is released, the interrupt priority level is as follows shown in Table 3. **Table 3 Interrupt sources** | Priority
level | Interrupt name | Activated condition | Interrupt address |
-------------------|----------------------|--------------------------|---------------------| | 1 | External 0 interrupt | Level change of INT0 pin | Address 0 in page 1 | | 2 | External 1 interrupt | Level change of INT1 pin | Address 2 in page 1 | | 3 | Timer 1 interrupt | Timer 1 underflow | Address 4 in page 1 | | 4 | Timer 2 interrupt | Timer 2 underflow | Address 6 in page 1 | | 5 | Timer 3 interrupt | Timer 3 underflow | Address 8 in page 1 | | 6 | Timer 5 interrupt | Timer 5 underflow | Address A in page 1 | | 7 | Timer 4 interrupt | Timer 4 underflow | Address E in page 1 | Table 4 Interrupt request flag, interrupt enable bit and skip instruction | 311 4011011 | | | | |----------------------|--------------|------------------|------------| | Interrupt name | Request flag | Skip instruction | Enable bit | | External 0 interrupt | EXF0 | SNZ0 | V10 | | External 1 interrupt | EXF1 | SNZ1 | V11 | | Timer 1 interrupt | T1F | SNZT1 | V12 | | Timer 2 interrupt | T2F | SNZT2 | V13 | | Timer 3 interrupt | T3F | SNZT3 | V20 | | Timer 5 interrupt | T5F | SNZT5 | V21 | | Timer 4 interrupt | T4F | SNZT4 | V23 | Table 5 Interrupt enable bit function | 1440.000 | | | | | | | | | |----------------------|-------------------------|------------------|--|--|--|--|--|--| | Interrupt enable bit | Occurrence of interrupt | Skip instruction | | | | | | | | 1 | Enabled | Invalid | | | | | | | | 0 | Disabled | Valid | | | | | | | ### (4) Internal state during an interrupt The internal state of the microcomputer during an interrupt is as follows (Figure 14). - Program counter (PC) - An interrupt address is set in program counter. The address to be executed when returning to the main routine is automatically stored in the stack register (SK). - Interrupt enable flag (INTE) INTE flag is cleared to "0" so that interrupts are disabled. - Interrupt request flag Only the request flag for the current interrupt source is cleared to "0." - Data pointer, carry flag, skip flag, registers A and B The contents of these registers and flags are stored automatically in the interrupt stack register (SDP). ### (5) Interrupt processing When an interrupt occurs, a program at an interrupt address is executed after branching a data store sequence to stack register. Write the branch instruction to an interrupt service routine at an interrupt address. Use the RTI instruction to return from an interrupt service routine. Interrupt enabled by executing the EI instruction is performed after executing 1 instruction (just after the next instruction is executed). Accordingly, when the EI instruction is executed just before the RTI instruction, interrupts are enabled after returning the main routine. (Refer to Figure 13) Fig. 13 Program example of interrupt processing Program counter (PC) Each interrupt address Stack register (SK) The address of main routine to be executed when returning Interrupt enable flag (INTE) Interrupt request flag (only the flag for the current interrupt source) Data pointer, carry flag, registers A and B, skip flag Stored in the interrupt stack register (SDP) automatically Fig. 14 Internal state when interrupt occurs Fig. 15 Interrupt system diagram ### (6) Interrupt control registers - Interrupt control register V1 Interrupt enable bits of external 0, external 1, timer 1 and timer 2 are assigned to register V1. Set the contents of this register through register A with the TV1A instruction. The TAV1 instruction can be used to transfer the contents of register V1 to register A. - Interrupt control register V2 The timer 3, timer 5, timer 4 interrupt enable bit is assigned to register V2. Set the contents of this register through register A with the TV2A instruction. The TAV2 instruction can be used to transfer the contents of register V2 to register A. Table 6 Interrupt control registers | | Interrupt control register V1 | | reset : 00002 | at power down: 00002 | R/W
TAV1/TV1A | |------|---------------------------------|---|---------------------|-------------------------------|------------------| | V13 | Timer 2 interrupt enable bit | 0 | Interrupt disabled | (SNZT2 instruction is valid) | | | V 13 | Timer 2 interrupt enable bit | 1 | Interrupt enabled (| SNZT2 instruction is invalid) | | | V12 | Timer 1 interrupt enable bit | 0 | Interrupt disabled | (SNZT1 instruction is valid) | | | V 12 | | 1 | Interrupt enabled (| SNZT1 instruction is invalid) | | | V11 | External 1 interrupt anable hit | 0 | Interrupt disabled | (SNZ1 instruction is valid) | | | VII | External 1 interrupt enable bit | 1 | Interrupt enabled (| SNZ1 instruction is invalid) | | | V10 | External 0 interrupt enable bit | 0 | Interrupt disabled | (SNZ0 instruction is valid) | | | V 10 | External o interrupt enable bit | 1 | Interrupt enabled (| SNZ0 instruction is invalid) | | | | Interrupt control register V2 | | reset : 00002 | at power down : 00002 | R/W
TAV2/TV2A | |-------|--------------------------------|---|--|--|------------------| | V23 | Timer 4 interrupt enable bit | 0 | Interrupt disabled | (SNZT4 instruction is valid) | | | V 23 | | 1 | Interrupt enabled (| Interrupt enabled (SNZT4 instruction is invalid) | | | V22 | Not used | 0 | This bit has no function, but read/write is enabled. | | | | V Z Z | | 1 | | | | | V21 | Timer 5 interrupt enable bit | 0 | Interrupt disabled | (SNZT5 instruction is valid) | | | V Z 1 | Timer 5 interrupt enable bit | 1 | Interrupt enabled (| (SNZT5 instruction is invalid) | | | V20 | Timer 3 interrupt enable bit | 0 | Interrupt disabled | (SNZT3 instruction is valid) | | | V 20 | типет з инетирі епаріе вії
 | 1 | Interrupt enabled (| (SNZT3 instruction is invalid) | | Note: "R" represents read enabled, and "W" represents write enabled. ### (7) Interrupt sequence Interrupts only occur when the respective INTE flag, interrupt enable bits (V10–V13, V20, V21, V23), and interrupt request flag are "1." The interrupt actually occurs 2 to 3 machine cycles after the cycle in which all three conditions are satisfied. The interrupt occurs after 3 machine cycles only when the three interrupt conditions are satisfied on execution of other than one-cycle instructions (Refer to Figure 16). Fig. 16 Interrupt sequence ### **EXTERNAL INTERRUPTS** The 4554 Group has the external 0 interrupt and external 1 interrupt. An external interrupt request occurs when a valid waveform is input to an interrupt input pin (edge detection). The external interrupt can be controlled with the interrupt control registers I1 and I2. Table 7 External interrupt activated conditions | Name | Input pin | Activated condition | Valid waveform selection bit | |----------------------|-----------|--|------------------------------| | External 0 interrupt | D8/INT0 | When the next waveform is input to D8/INT0 pin | l11 | | | | Falling waveform ("H"→"L") | l12 | | | | Rising waveform ("L"→"H") | | | | | Both rising and falling waveforms | | | External 1 interrupt | D9/INT1 | When the next waveform is input to D9/INT1 pin | I21 | | | | Falling waveform ("H"→"L") | 122 | | | | Rising waveform ("L"→"H") | | | | | Both rising and falling waveforms | | Fig. 17 External interrupt circuit structure ### (1) External 0 interrupt request flag (EXF0) External 0 interrupt request flag (EXF0) is set to "1" when a valid waveform is input to D8/INT0 pin. The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 16). The state of EXF0 flag can be examined with the skip instruction (SNZ0). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF0 flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with the skip instruction. - External 0 interrupt activated condition - External 0 interrupt activated condition is satisfied when a valid waveform is input to D8/INT0 pin. - The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 0 interrupt is as follows. - ① Set the bit 3 of register I1 to "1" for the INT0 pin to be in the input enabled state. - 2 Select the valid waveform with the bits 1 and 2 of register I1. - ③ Clear the EXF0 flag to "0" with the SNZ0 instruction. - Set the NOP instruction for the case when a skip is performed with the SNZ0 instruction. - Set both the external 0 interrupt enable bit (V10) and the INTE flag to "1." The external 0 interrupt is now enabled. Now when a valid waveform is input to the D8/INT0 pin, the EXF0 flag is set to "1" and the external 0 interrupt occurs. ### (2) External 1 interrupt request flag (EXF1) External 1 interrupt request flag (EXF1) is set to "1" when a valid waveform is input to D9/INT1 pin. The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 16) The state of EXF1 flag can be examined with the skip instruction (SNZ1). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF1 flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with the skip instruction - External 1 interrupt activated condition - External 1 interrupt activated condition is satisfied when a valid waveform is input to D9/INT1 pin. - The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 1 interrupt is as follows. - ① Set the bit 3 of register I2 to "1" for the INT1 pin to be in the input enabled state. - ② Select the valid waveform with the bits 1 and 2 of register I2. - ③ Clear the EXF1 flag to "0" with the SNZ1 instruction. - Set the NOP instruction for the case when a skip is performed with the SNZ1 instruction. - Set both the
external 1 interrupt enable bit (V11) and the INTE flag to "1." The external 1 interrupt is now enabled. Now when a valid waveform is input to the D9/INT1 pin, the EXF1 flag is set to "1" and the external 1 interrupt occurs. ### (3) External interrupt control registers • Interrupt control register I1 Register I1 controls the valid waveform for the external 0 interrupt. Set the contents of this register through register A with the TI1A instruction. The TAI1 instruction can be used to transfer the contents of register I1 to register A. • Interrupt control register I2 Register I2 controls the valid waveform for the external 1 interrupt. Set the contents of this register through register A with the TI2A instruction. The TAI2 instruction can be used to transfer the contents of register I2 to register A. Table 8 External interrupt control register | | Interrupt control register I1 | | reset : 00002 | at power down : state retained | R/W
TAI1/TI1A | |-----------------|---|-----------------------------------|---|--|------------------| | l13 | INT0 pin input control bit (Note 2) | 0 | INT0 pin input disa | abled | | | 113 | in to pin input control bit (Note 2) | 1 | INT0 pin input ena | bled | | | 112 | Interrupt valid waveform for INT0 pin/
return level selection bit (Note 2) | 0 | Falling waveform/"L" level ("L" level is recognized with the SNZIO instruction) | | | | 112 | | 1 | Rising waveform/"I instruction) | H" level ("H" level is recognized with | the SNZI0 | | l1 ₁ | INT0 pin edge detection circuit control bit | 0 | One-sided edge de | etected | | | ''' | INTO pin eage detection circuit control bit | 1 | Both edges detected | | | | 110 | INT0 pin Timer 1 count start synchronous | 0 | Timer 1 count start synchronous circuit not selected | | | | 110 | circuit selection bit | 1 Timer 1 count start synchronous | | t synchronous circuit selected | | | Interrupt control register I2 | | at reset : 00002 | | at power down : state retained | R/W
TAI2/TI2A | |-------------------------------|---|------------------|---|--|------------------| | 120 | INT1 pin input control bit (Note 2) | 0 | INT1 pin input disa | abled | | | I2 3 | IN 11 pin input control bit (Note 2) | 1 | INT1 pin input ena | bled | | | 10- | Interrupt valid waveform for INT1 pin/
return level selection bit (Note 2) | 0 | Falling waveform/"L" level ("L" level is recognized with the SNZI1 instruction) | | | | l2 2 | | 1 | Rising waveform/"I instruction) | H" level ("H" level is recognized with | the SNZI1 | | I 21 | INITA pin added detection circuit control bit | 0 | One-sided edge de | etected | | | 121 | INT1 pin edge detection circuit control bit | 1 | Both edges detected | ed | | | 120 | INT1 pin Timer 3 count start synchronous | 0 | Timer 3 count start | t synchronous circuit not selected | | | 120 | circuit selection bit | 1 | Timer 3 count start | rt synchronous circuit selected | | Notes 1: "R" represents read enabled, and "W" represents write enabled. ^{2:} When the contents of these bits (I12, I13, I22 and I23) are changed, the external interrupt request flag (EXF0, EXF1) may be set. ### (4) Notes on External 0 interrupts - ① Note [1] on bit 3 of register I1 - When the input of the INT0 pin is controlled with the bit 3 of register I1 in software, be careful about the following notes. - Depending on the input state of the D8/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 18①) and then, change the bit 3 of register I1. - In addition, execute the SNZ0 instruction to clear the EXF0 flag after executing at least one instruction (refer to Figure 182). - Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 183). Fig. 18 External 0 interrupt program example-1 - 2 Note [2] on bit 3 of register I1 - When the bit 3 of register I1 is cleared, the RAM back-up mode is selected and the input of INT0 pin is disabled, be careful about the following notes. - When the key-on wakeup function of INT0 pin is not used (register K20 = "0"), clear bits 2 and 3 of register I1 before system enters to the RAM back-up mode. (refer to Figure 191). ``` LA ; (00XX2) TI1A ; Input of INT0 disabled ① DI EPOF POF2 ; RAM back-up X: these bits are not used here. ``` Fig. 19 External 0 interrupt program example-2 - 3 Note on bit 2 of register I1 When the interrupt valid waveform of the D8/INT0 pin is changed - with the bit 2 of register I1 in software, be careful about the following notes. - Depending on the input state of the D8/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register 11 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 20①) and then, change the bit 2 of register I1. - In addition, execute the SNZ0 instruction to clear the EXF0 flag after executing at least one instruction (refer to Figure 202). - Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 203). Fig. 20 External 0 interrupt program example-3 ### (5) Notes on External 1 interrupts - ① Note [1] on bit 3 of register I2 - When the input of the INT1 pin is controlled with the bit 3 of register I2 in software, be careful about the following notes. - Depending on the input state of the D9/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 3 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 21⁽¹⁾) and then, change the bit 3 of register I2. - In addition, execute the SNZ1 instruction to clear the EXF1 flag after executing at least one instruction (refer to Figure 21②). - Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 21③). Fig. 21 External 1 interrupt program example-1 - 2 Note [2] on bit 3 of register I2 - When the bit 3 of register I2 is cleared, the RAM back-up mode is selected and the input of INT1 pin is disabled, be careful about the following notes. - When the key-on wakeup function of INT1 pin is not used (register K22 = "0"), clear bits 2 and 3 of register I2 before system enters to the RAM back-up mode. (refer to Figure 22①). ``` LA 0 ; (00××2) TI2A ; Input of INT1 disabled① DI EPOF POF2 ; RAM back-up X: these bits are not used here. ``` Fig. 22 External 1 interrupt program example-2 - 3 Note on bit 2 of register I2 - When the interrupt valid waveform of the D9/INT1 pin is changed with the bit 2 of register I2 in software, be careful about the following notes. - Depending on the input state of the De/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 2 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 23⁽¹⁾) and then, change the bit 2 of register I2. - In addition, execute the SNZ1 instruction to clear the EXF1 flag after executing at least one instruction (refer to Figure 23②). - Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 23³). Fig. 23 External 1 interrupt program example-3 #### **TIMERS** The 4554 Group has the following timers. · Programmable timer The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n. When it underflows (count to n+1), a timer interrupt request flag is set to "1," new data is loaded from the reload register, and count continues (auto-reload function). Fixed dividing frequency timer The fixed dividing frequency timer has the fixed frequency dividing ratio (n). An interrupt request flag is set to "1" after every n count of a count pulse. Fig. 24 Auto-reload function The 4554 Group timer consists of the following circuits. - Prescaler : 8-bit programmable timer - Timer 1 : 8-bit programmable timer - Timer 2 : 8-bit programmable timer - Timer 3: 8-bit programmable timer - Timer 4 : 8-bit programmable timer - Timer 5 : 16-bit fixed dividing frequency timer - Timer LC : 4-bit programmable timer - Watchdog timer: 16-bit fixed dividing frequency timer (Timers 1, 2, 3, 4 and 5 have the interrupt function, respectively) Prescaler and timers 1, 2, 3, 4, 5 and LC can be controlled with the timer control registers PA, W1 to W6. The watchdog timer is a free counter which is not controlled with the control register. Each function is described below. **Table 9 Function related timers** | Circuit | Structure | Count source | Frequency dividing ratio | Use of output signal | Control register | |-----------|--|----------------------------|--------------------------|---|------------------| | Prescaler | 8-bit programmable binary down counter | Instruction clock (INSTCK) | 1 to 256 | • Timer 1, 2, 3, 4 and LC count sources | PA | | Timer 1 | 8-bit programmable | Instruction clock (INSTCK) | 1 to 256 | Timer 2 count source | W1 | | | binary down counter | Prescaler output (ORCLK) | | CNTR0 output | W2 | | | (link to INT0 input) | Timer 5 underflow | | Timer 1 interrupt | | | | | (T5UDF) | | · | | | | | CNTR0 input | | | | | Timer 2 | 8-bit programmable | System clock (STCK) | 1 to 256 | Timer 3 count source | W2 | | | binary down counter | Prescaler output
(ORCLK) | | CNTR0 output | | | | | Timer 1 underflow | | Timer 2 interrupt | | | | | (T1UDF) | | | | | | | PWM output (PWMOUT) | | | | | Timer 3 | 8-bit programmable | PWM output (PWMOUT) | 1 to 256 | CNTR1 output control | W3 | | | binary down counter | Prescaler output (ORCLK) | | Timer 3 interrupt | | | | (link to INT1 input) | Timer 2 underflow | | | | | | | (T2UDF) | | | | | | | CNTR1 input | | | | | Timer 4 | 8-bit programmable | XIN input | 1 to 256 | • Timer 2, 3 count source | W4 | | | binary down counter | Prescaler output (ORCLK) | | CNTR1 output | | | | (PWM output function) | | | Timer 4 interrupt | | | Timer 5 | 16-bit fixed dividing | XCIN input | 8192 | Timer 1, LC count source | W5 | | | frequency | | 16384 | Timer 5 interrupt | | | | | | 32768 | | | | | | | 65536 | | | | Timer LC | 4-bit programmable | Bit 4 of timer 5 | 1 to 16 | LCD clock | W6 | | | binary down counter | Prescaler output (ORCLK) | | | | | Watchdog | 16-bit fixed dividing | Instruction clock (INSTCK) | 65534 | System reset (count twice) | | | timer | frequency | | | WDF flag decision | | Fig. 25 Timer structure (1) Fig. 26 Timer structure (2) ### Table 10 Timer related registers | Timer control register PA | | á | at reset : 02 | at power down : 02 | W
TPAA | | |---------------------------|-----------------|-----------------------|---------------|------------------------|-----------|--| | | PA ₀ | Prescaler control bit | 0 | Stop (state initialize | ed) | | | | FAU | | 1 | Operating | | | | | Timer control register W1 | | at reset : 00002 | | at power down : state retained | R/W
TAW1/TW1A | |-------|---|-----|------------------|----------------------------------|--------------------------------|------------------| | W13 | Timer 1 count auto-stop circuit selection | (| 0 | Timer 1 count auto | -stop circuit not selected | | | ***** | bit (Note 2) | | 1 | Timer 1 count auto | -stop circuit selected | | | W12 | T 4 11 11 | | 0 | Stop (state retained) | | | | VV 12 | Timer 1 control bit | | 1 | Operating | | | | | Timer 1 count source selection bits | W11 | W10 | | Count source | | | W11 | | 0 | 0 | Instruction clock (INSTCK) | | | | | | 0 | 1 | Prescaler output (ORCLK) | | | | W10 | | 1 | 0 | Timer 5 underflow signal (T5UDF) | | | | | | 1 | 1 | CNTR0 input | | | | | Timer control register W2 | | at reset : 00002 | | at power down : state retained | R/W
TAW2/TW2A | |-------|-------------------------------------|-----|------------------|--|--------------------------------|------------------| | W23 | CNTR0 output control bit | (|) | Timer 1 underflow signal divided by 2 output | | | | ***25 | CNTRO output control bit | 1 | | Timer 2 underflow | signal divided by 2 output | | | W22 | W22 Timer 2 control bit | |) | Stop (state retained) | | | | **** | Timer 2 control bit | 1 | 1 Operating | | | | | 1440 | Timer 2 count source selection bits | W21 | W20 | | Count source | | | W21 | | 0 | 0 | System clock (STC | CK) | | | | | 0 | 1 | Prescaler output (ORCLK) | | | | W20 | | 1 | 0 | Timer 1 underflow signal (T1UDF) | | | | | | 1 | 1 | PWM signal (PWM | OUT) | | | Timer control register W3 | | at reset : 00002 | | reset: 00002 | at power down : state retained | R/W
TAW3/TW3A | |---------------------------|--|------------------|-----|--|--------------------------------|------------------| | W33 | Timer 3 count auto-stop circuit selection bit (Note 3) | 0 | | Timer 3 count auto-stop circuit not selected | | | | ***** | | 1 | | Timer 3 count auto-stop circuit selected | | | | W32 | Timer 3 control bit | 0 | | Stop (state retained) | | | | VV32 | | 1 | 1 | Operating | | | | 1440 | Timer 3 count source selection bits (Note 4) | W31 | W30 | Count source | | | | W31 | | 0 | 0 | PWM signal (PWMOUT) | | | | W30 | | 0 | 1 | Prescaler output (ORCLK) | | | | | | 1 | 0 | Timer 2 underflow signal (T2UDF) | | | | | | 1 | 1 | CNTR1 input | | | Notes 1: "R" represents read enabled, and "W" represents write enabled. - This function is valid only when the timer 1 count start synchronous circuit is selected (I10="1"). This function is valid only when the timer 3 count start synchronous circuit is selected (I20="1"). Port C output is invalid when CNTR1 input is selected for the timer 3 count source. | Timer control register W4 | | at reset : 00002 | | at power down : 00002 | R/W
TAW4/TW4A | |---------------------------|--|------------------|--|-----------------------|------------------| | W43 | CNTR1 output control bit | 0 | CNTR1 output inva | alid | | | | | 1 | CNTR1 output valid | | | | W42 | PWM signal "H" interval expansion function control bit | 0 | PWM signal "H" interval expansion function invalid | | | | | | 1 | PWM signal "H" interval expansion function valid | | | | W41 | Timer 4 control bit | 0 | Stop (state retained) | | | | | | 1 | Operating | | | | W40 | Timer 4 count source selection bit | 0 | XIN input | | | | | | 1 | Prescaler output (0 | ORCLK) divided by 2 | | | Timer control register W5 | | at reset : 00002 | | reset : 00002 | at power down : state retained | R/W
TAW5/TW5A | |---------------------------|------------------------------------|------------------|-----|--|--------------------------------|------------------| | W53 | Not used | |) | This bit has no function, but read/write is enabled. | | | | | | · | 1 | · | | | | W52 | Timer 5 control bit | 0 | | Stop (state initialized) | | | | | | • | 1 | Operating | | | | W51 | Timer 5 count value selection bits | W51 | W50 | Count value | | | | | | 0 | 0 | Underflow occurs every 8192 counts | | | | W50 | | 0 | 1 | Underflow occurs every 16384 counts | | | | | | 1 | 0 | Underflow occurs every 32768 counts | | | | | | 1 | 1 | Underflow occurs e | every 65536 counts | | | Timer control register W6 | | at reset : 00002 | | at power down : state retained | R/W
TAW6/TW6A | | | |---------------------------|-------------------------------------|------------------|--|--------------------------------|------------------|--|--| | W63 | Timer LC control bit | 0 | Stop (state retained) | | | | | | | | 1 | Operating | | | | | | W62 | Timer LC count source selection bit | 0 | Bit 4 (T54) of timer 5 | | | | | | | | 1 | Prescaler output (ORCLK) | | | | | | W61 | CNTR1 output auto-control circuit | 0 | CNTR1 output auto-control circuit not selected | | | | | | VVOI | selection bit | 1 | CNTR1 output auto-control circuit selected | | | | | | W60 | D7/CNTR0 pin function selection bit | 0 | D7(I/O)/CNTR0 input | | | | | | | (Note 2) | 1 | CNTR0 input/output/D7 (input) | | | | | Notes 1: "R" represents read enabled, and "W" represents write enabled. 2: CNTR0 input is valid only when CNTR0 input is selected for the timer 1 count source. ## (1) Timer control registers Timer control register PA Register PA controls the count operation of prescaler. Set the contents of this register through register A with the TPAA instruction. Timer control register W1 Register W1 controls the selection of timer 1 count auto-stop circuit, and the count operation and count source of timer 1. Set the contents of this register through register A with the TW1A instruction. The TAW1 instruction can be used to transfer the contents of register W1 to register A. Timer control register W2 Register W2 controls the selection of CNTR0 output, and the count operation and count source of timer 2. Set the contents of this register through register A with the TW2A instruction. The TAW2 instruction can be used to transfer the contents of register W2 to register A. · Timer control register W3 Register W3 controls the selection of timer 3 count auto-stop circuit, and the count operation and count source of timer 3. Set the contents of this register through register A with the TW3A instruction. The TAW3 instruction can be used to transfer the contents of register W3 to register A. · Timer control register W4 Register W4 controls the CNTR1 output, the expansion of "H" interval of PWM output, and the count operation and count source of timer 4. Set the contents of this register through register A with the TW4A instruction. The TAW4 instruction can be used to transfer the contents of register W4 to register A. • Timer control register W5 Register W5 controls the count operation and count source of timer 5. Set the contents of this register through register A with the TW5A instruction. The TAW5 instruction can be used to transfer the contents of register W5 to register A. • Timer control register W6 Register W6 controls the operation and count source of timer LC, the selection of CNTR1 output auto-control circuit and the D7/CNTR0 pin function. Set the contents of this register through register A with the TW6A instruction. The TAW6 instruction can be used to transfer the contents of register W6 to register A.. ## (2) Prescaler (interrupt function) Prescaler is an 8-bit binary down counter with the prescaler reload register PRS. Data can be set simultaneously in prescaler and the reload register RPS with the TPSAB instruction. Data can be read from reload register RPS with the TABPS instruction. Stop counting and then execute the TPSAB or TABPS instruction to read or set prescaler data. Prescaler starts counting after the following process; ① set data in prescaler, and 2 set the bit 0 of register PA to "1." When a value set in reload register RPS is n, prescaler divides the count source signal by n + 1 (n = 0 to 255). Count source for prescaler is the instruction clock (INSTCK). Once count is started, when prescaler underflows (the next count pulse is input after the contents of prescaler becomes "0"), new data is loaded from reload register RPS, and
count continues (auto-reload function). The output signal (ORCLK) of prescaler can be used for timer 1, 2, 3, 4 and LC count sources. # (3) Timer 1 (interrupt function) Timer 1 is an 8-bit binary down counter with the timer 1 reload register (R1). Data can be set simultaneously in timer 1 and the reload register (R1) with the T1AB instruction. Data can be written to reload register (R1) with the TR1AB instruction. Data can be read from timer 1 with the TAB1 instruction. Stop counting and then execute the T1AB or TAB1 instruction to read or set timer 1 data. When executing the TR1AB instruction to set data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows. Timer 1 starts counting after the following process; ① set data in timer 1 2 set count source by bits 0 and 1 of register W1, and 3 set the bit 2 of register W1 to "1." When a value set in reload register R1 is n, timer 1 divides the count source signal by n + 1 (n = 0 to 255). Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes "0"), the timer 1 interrupt request flag (T1F) is set to "1," new data is loaded from reload register R1, and count continues (auto-reload function). INTO pin input can be used as the start trigger for timer 1 count operation by setting the bit 0 of register I1 to "1." Also, in this time, the auto-stop function by timer 1 underflow can be performed by setting the bit 3 of register W1 to "1." Timer 1 underflow signal divided by 2 can be output from CNTR0 pin by clearing bit 3 of register W2 to "0" and setting bit 0 of register W6 to "1". # (4) Timer 2 (interrupt function) Timer 2 is an 8-bit binary down counter with the timer 2 reload register (R2). Data can be set simultaneously in timer 2 and the reload register (R2) with the T2AB instruction. Data can be read from timer 2 with the TAB2 instruction. Stop counting and then execute the T2AB or TAB2 instruction to read or set timer 2 data. Timer 2 starts counting after the following process; - ① set data in timer 2. - 2 select the count source with the bits 0 and 1 of register W2, and - 3 set the bit 2 of register W2 to "1." When a value set in reload register R2 is n, timer 2 divides the count source signal by n + 1 (n = 0 to 255). Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes "0"), the timer 2 interrupt request flag (T2F) is set to "1," new data is loaded from reload register R2, and count continues (auto-reload function). Timer 2 underflow signal divided by 2 can be output from CNTR0 pin by setting bit 3 of register W2 to "1" and setting bit 0 of register W6 to "1". # (5) Timer 3 (interrupt function) Timer 3 is an 8-bit binary down counter with the timer 3 reload register (R3). Data can be set simultaneously in timer 3 and the reload register (R3) with the T3AB instruction. Data can be written to reload register (R3) with the TR3AB instruction. Data can be read from timer 3 with the TAB3 instruction. Stop counting and then execute the T3AB or TAB3 instruction to read or set timer 3 data. When executing the TR3AB instruction to set data to reload register R3 while timer 3 is operating, avoid a timing when timer 3 underflows. Timer 3 starts counting after the following process; - ① set data in timer 3 - 2 set count source by bits 0 and 1 of register W3, and - 3 set the bit 2 of register W3 to "1." When a value set in reload register R3 is n, timer 3 divides the count source signal by n + 1 (n = 0 to 255). Once count is started, when timer 3 underflows (the next count pulse is input after the contents of timer 3 becomes "0"), the timer 3 interrupt request flag (T3F) is set to "1," new data is loaded from reload register R3, and count continues (auto-reload function). INT1 pin input can be used as the start trigger for timer 3 count operation by setting the bit 0 of register I2 to "1." Also, in this time, the auto-stop function by timer 3 underflow can be performed by setting the bit 3 of register W3 to "1." ## (6) Timer 4 (interrupt function) Timer 4 is an 8-bit binary down counter with two timer 4 reload registers (R4L, R4H). Data can be set simultaneously in timer 4 and the reload register R4L with the T4AB instruction. Data can be set in the reload register R4H with the T4HAB instruction. The contents of reload register R4L set with the T4AB instruction can be set to timer 4 again with the T4R4L instruction. Data can be read from timer 4 with the TAB4 instruction. Stop counting and then execute the T4AB or TAB4 instruction to read or set timer 4 data. When executing the T4HAB instruction to set data to reload register R4H while timer 4 is operating, avoid a timing when timer 4 underflows Timer 4 starts counting after the following process; - ① set data in timer 4 - 2 set count source by bit 0 of register W4, and - 3 set the bit 1 of register W4 to "1." When a value set in reload register R4L is n, timer 4 divides the count source signal by n + 1 (n = 0 to 255). Once count is started, when timer 4 underflows (the next count pulse is input after the contents of timer 4 becomes "0"), the timer 4 interrupt request flag (T4F) is set to "1," new data is loaded from reload register R4L, and count continues (auto-reload function). When bit 3 of register W4 is set to "1", timer 4 reloads data from reload register R4L and R4H alternately each underflow. Timer 4 generates the PWM signal (PWMOUT) of the "L" interval set as reload register R4L, and the "H" interval set as reload register R4H. The PWM signal (PWMOUT) is output from CNTR1 pin. When bit 2 of register W4 is set to "1" at this time, the interval (PWM signal "H" interval) set to reload register R4H for the counter of timer 4 is extended for a half period of count source. In this case, when a value set in reload register R4H is n, timer 4 divides the count source signal by n + 1.5 (n = 1 to 255). When this function is used, set "1" or more to reload register R4H. When bit 1 of register W6 is set to "1", the PWM signal output to CNTR1 pin is switched to valid/invalid each timer 3 underflow. However, when timer 3 is stopped (bit 2 of register W3 is cleared to "0"), this function is canceled. Even when bit 1 of a register W4 is cleared to "0" in the "H" interval of PWM signal, timer 4 does not stop until it next timer 4 underflow. When clearing bit 1 of register W4 to "0" to stop timer 4, avoid a timing when timer 4 underflows. ## (7) Timer 5 (interrupt function) Timer 5 is a 16-bit binary down counter. Timer 5 starts counting after the following process; - ① set count value by bits 0 and 1 of register W5, and - 2 set the bit 2 of register W5 to "1." Count source for timer 5 is the sub-clock input (XCIN). Once count is started, when timer 5 underflows (the set count value is counted), the timer 5 interrupt request flag (T5F) is set to "1." and count continues. Bit 4 of timer 5 can be used as the timer LC count source for the LCD clock generating. When bit 2 of register W5 is cleared to "0", timer 5 is initialized to "FFFF16" and count is stopped. Timer 5 can be used as the counter for clock because it can be operated at clock operating mode (POF instruction execution). When timer 5 underflow occurs at clock operating mode, system returns from the power down state. ## (8) Timer LC Timer LC is a 4-bit binary down counter with the timer LC reload register (RLC). Data can be set simultaneously in timer LC and the reload register (RLC) with the TLCA instruction. Data cannot be read from timer LC. Stop counting and then execute the TLCA instruction to set timer LC data. Timer LC starts counting after the following process; - ① set data in timer LC, - 2 select the count source with the bit 2 of register W6, and - 3 set the bit 3 of register W6 to "1." When a value set in reload register RLC is n, timer LC divides the count source signal by n + 1 (n = 0 to 15). Once count is started, when timer LC underflows (the next count pulse is input after the contents of timer LC becomes "0"), new data is loaded from reload register RLC, and count continues (auto-reload function). Timer LC underflow signal divided by 2 can be used for the LCD clock. # (9) Timer input/output pin (D7/CNTR0 pin, C/CNTR1 pin) CNTR0 pin is used to input the timer 1 count source and output the timer 1 and timer 2 underflow signal divided by 2. CNTR1 pin is used to input the timer 3 count source and output the PWM signal generated by timer 4. When the PWM signal is output from C/CNTR1 pin, set "0" to the output latch of port C. The D7/CNTR0 pin function can be selected by bit 0 of register W6. The selection of CNTR1 output signal can be controlled by bit 3 of register W4. When the CNTR0 input is selected for timer 1 count source, timer 1 counts the rising waveform of CNTR0 input. When the CNTR1 input is selected for timer 3 count source, timer 3 counts the rising waveform of CNTR1 input. Also, when the CNTR1 input is selected, the output of port C is invalid (high-impedance state). ## (10) Timer interrupt request flags (T1F, T2F, T3F, T4F, T5F) Each timer interrupt request flag is set to "1" when each timer underflows. The state of these flags can be examined with the skip instructions (SNZT1, SNZT2, SNZT3, SNZT4, SNZT5). Use the interrupt control register V1, V2 to select an interrupt or a skip instruction. An interrupt request flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with a skip instruction. # (11) Count start synchronization circuit (timer 1, timer 3) Timer 1 and timer 3 have the count start synchronous circuit which synchronizes the input of INT0 pin and INT1 pin, and can start the timer count operation. Timer 1 count start synchronous circuit function is selected by setting the bit 0 of register I1 to "1" and the control by INT0 pin input can be performed. Timer 3 count start synchronous circuit function is selected by setting the bit 0 of register I2 to "1"
and the control by INT1 pin input can be performed. When timer 1 or timer 3 count start synchronous circuit is used, the count start synchronous circuit is set, the count source is input to each timer by inputting valid waveform to INT0 pin or INT1 pin. The valid waveform of INT0 pin or INT1 pin to set the count start synchronous circuit is the same as the external interrupt activated condition. Once set, the count start synchronous circuit is cleared by clearing the bit I10 or I20 to "0" or reset. However, when the count auto-stop circuit is selected, the count start synchronous circuit is cleared (auto-stop) at the timer 1 or timer 3 underflow. ## (12) Count auto-stop circuit (timer 1, timer 3) Timer 1 has the count auto-stop circuit which is used to stop timer 1 automatically by the timer 1 underflow when the count start synchronous circuit is used. The count auto-stop cicuit is valid by setting the bit 3 of register W1 to "1". It is cleared by the timer 1 underflow and the count source to timer 1 is stopped. This function is valid only when the timer 1 count start synchronous circuit is selected. Timer 3 has the count auto-stop circuit which is used to stop timer 3 automatically by the timer 3 underflow when the count start synchronous circuit is used. The count auto-stop cicuit is valid by setting the bit 3 of register W3 to "1". It is cleared by the timer 3 underflow and the count source to timer 3 is stopped. This function is valid only when the timer 3 count start synchronous circuit is selected. ## (13) Precautions Note the following for the use of timers. #### Prescaler Stop counting and then execute the TABPS instruction to read from prescaler data. Stop counting and then execute the TPSAB instruction to set prescaler data. #### • Timer count source Stop timer 1, 2, 3, 4 and LC counting to change its count source. #### · Reading the count value Stop timer 1, 2, 3 or 4 counting and then execute the data read instruction (TAB1, TAB2, TAB3, TAB4) to read its data. #### · Writing to the timer Stop timer 1, 2, 3, 4 or LC counting and then execute the data write instruction (T1AB, T2AB, T3AB, T4AB, TLCA) to write its data. #### · Writing to reload register R1, R3, R4H When writing data to reload register R1, reload register R3 or reload regiser R4H while timer 1, timer 3 or timer 4 is operating, avoid a timing when timer 1, timer 3 or timer 4 underflows. #### • Timer 4 Avoid a timing when timer 4 underflows to stop timer 4. When "H" interval extension function of the PWM signal is set to be "valid", set "1" or more to reload register R4H. #### • Timer 5 Stop timer 5 counting to change its count source. #### • Timer input/output pin Set the port C output latch to "0" to output the PWM signal from $\mbox{C/CNTR}$ pin. Fig. 27 Timer 4 operation (reload register R4L: "0316", R4H: "0216") Fig. 28 CNTR1 output auto-control function by timer 3 Fig. 29 Timer 4 count start/stop timing #### WATCHDOG TIMER Watchdog timer provides a method to reset the system when a program run-away occurs. Watchdog timer consists of timer WDT(16-bit binary counter), watchdog timer enable flag (WEF), and watchdog timer flags (WDF1, WDF2). The timer WDT downcounts the instruction clocks as the count source from "FFFF16" after system is released from reset. After the count is started, when the timer WDT underflow occurs (after the count value of timer WDT reaches "000016," the next count pulse is input), the WDF1 flag is set to "1." If the WRST instruction is never executed until the timer WDT underflow occurs (until timer WDT counts 65534), WDF2 flag is set to "1," and the RESET pin outputs "L" level to reset the microcomputer. Execute the WRST instruction at each period of 65534 machine cycle or less by software when using watchdog timer to keep the microcomputer operating normally. When the WEF flag is set to "1" after system is released from reset, the watchdog timer function is valid. When the DWDT instruction and the WRST instruction are executed continuously, the WEF flag is cleared to "0" and the watchdog timer function is invalid. However, in order to set the WEF flag to "1" again once it has cleared to "0", execute system reset. The WRST instruction has the skip function. When the WRST instruction is executed while the WDF1 flag is "1", the WDF1 flag is cleared to "0" and the next instruction is skipped. When the WRST instruction is executed while the WDF1 flag is "0", the next instruction is not skipped. The skip function of the WRST instruction can be used even when the watchdog timer function is invalid. - ① After system is released from reset (= after program is started), timer WDT starts count down. - 2 When timer WDT underflow occurs, WDF1 flag is set to "1." - ® When the WRST instruction is executed, WDF1 flag is cleared to "0," the next instruction is skipped. - When timer WDT underflow occurs while WDF1 flag is "1," WDF2 flag is set to "1" and the watchdog reset signal is output. - (5) The output transistor of RESET pin is turned "ON" by the watchdog reset signal and system reset is executed. Note: The number of count is equal to the number of cycle because the count source of watchdog timer is the instruction clock. Fig. 30 Watchdog timer function When the watchdog timer is used, clear the WDF1 flag at the period of 65534 machine cycles or less with the WRST instruction. When the watchdog timer is not used, execute the DWDT instruction and the WRST instruction continuously (refer to Figure 31). The watchdog timer is not stopped with only the DWDT instruction. The contents of WDF1 flag and timer WDT are initialized at the power down mode. When using the watchdog timer and the power down mode, initialize the WDF1 flag with the WRST instruction just before the microcomputer enters the power down state (refer to Figure 32). The watchdog timer function is valid after system is returned from the power down. When not using the watchdog timer function, ex- The watchdog timer function is valid after system is returned from the power down. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously every system is returned from the power down, and stop the watchdog timer function. ``` WRST; WDF1 flag cleared DWDT; Watchdog timer function enabled/disabled WRST; WEF and WDF1 flags cleared ``` Fig. 31 Program example to start/stop watchdog timer ``` WRST; WDF1 flag cleared NOP DI; Interrupt disabled EPOF; POF instruction enabled POF ↓ Oscillation stop ``` Fig. 32 Program example to enter the mode when using the watchdog timer #### LCD FUNCTION The 4554 Group has an LCD (Liquid Crystal Display) controller/driver. When the proper voltage is applied to LCD power supply input pins (VLC1–VLC3) and data are set in timer control register (W6), timer LC, LCD control registers (L1, L2), and LCD RAM, the LCD controller/driver automatically reads the display data and controls the LCD display by setting duty and bias. 4 common signal output pins and 32 segment signal output pins can be used to drive the LCD. By using these pins, up to 128 segments (when 1/4 duty and 1/3 bias are selected) can be controlled to display. The LCD power input pins (VLC1–VLC3) are also used as pins SEG0–SEG2. When SEG0–SEG2 are selected, the internal power (VDD) is used for the LCD power. # (1) Duty and bias There are 3 combinations of duty and bias for displaying data on the LCD. Use bits 0 and 1 of LCD control register (L1) to select the proper display method for the LCD panel being used. - 1/2 duty, 1/2 bias - 1/3 duty, 1/3 bias - 1/4 duty, 1/3 bias Table 11 Duty and maximum number of displayed pixels | | | <u> </u> | | |----|-----|------------------------------------|--| | Du | ıty | Maximum number of displayed pixels | Used COM pins | | 1/ | 2 | 64 segments | COM ₀ , COM ₁ (Note) | | 1/ | 3 | 96 segments | COM0-COM2 (Note) | | 1/ | 4 | 128 segments | COM0-COM3 | Note: Leave unused COM pins open. ## (2) LCD clock control The LCD clock is determined by the timer LC count source selection bit (W62), timer LC control bit (W63), and timer LC. Accordingly, the frequency (F) of the LCD clock is obtained by the following formula. Numbers (① to ③) shown below the formula correspond to numbers in Figure 33, respectively. When using the prescaler output (ORCLK) as timer LC count source (W62="1") $$F = ORCLK \times \frac{1}{LC+1} \times \frac{1}{2}$$ $$0$$ $$0$$ $$0$$ $$0$$ • When using the bit 4 of timer 5 as timer LC count source (W62="0") $$F = \begin{bmatrix} T54 & X & \frac{1}{LC+1} & X & \frac{1}{2} \\ \hline ① & ② & ③ \end{bmatrix}$$ [LC: 0 to 15] The frame frequency and frame period for each display method can be obtained by the following formula: Frame frequency = $$\frac{F}{n}$$ (Hz) Frame period = $$\frac{n}{F}$$ (s) F: LCD clock frequency Fig. 33 LCD clock control circuit structure Fig. 34 LCD controller/driver # (3) LCD RAM RAM contains areas corresponding to the liquid crystal display. When "1" is written to this LCD RAM, the display pixel corresponding to the bit is automatically displayed. # (4) LCD drive waveform When "1" is written to a bit in the LCD RAM data, the voltage difference between common pin and segment pin which correspond to the bit automatically becomes IVLC3I and the display pixel at the cross section turns on. When returning from reset, and in the RAM back-up mode, a display pixel turns off because every segment output pin and common output pin becomes VLC3 level. | Χ | | | 12 | | | 13 | | | 14 | | | 14 | | | | | |------|------------------|------------------|------------------|------------------|-------------------|------------------|------------------|------------------|-------|------------------|-------|------------------|-------|------------------|-------|------------------| | Bits | 3 | 2 | 1 | 0 | 3 | 2 | 1 | 0 | 3 | 2 | 1 | 0 | 3 | 2 | 1 | 0 | | 8 | SEG ₀ | SEG ₀ | SEG ₀ | SEG ₀ | SEG8 | SEG8 | SEG8 | SEG8 | SEG16 | SEG16 | SEG16 | SEG16
| SEG24 | SEG24 | SEG24 | SEG24 | | 9 | SEG1 | SEG1 | SEG1 | SEG1 | SEG9 | SEG9 | SEG9 | SEG9 | SEG17 | SEG17 | SEG17 | SEG17 | SEG25 | SEG25 | SEG25 | SEG25 | | 10 | SEG2 | SEG2 | SEG2 | SEG2 | SEG ₁₀ | SEG10 | SEG10 | SEG10 | SEG18 | SEG18 | SEG18 | SEG18 | SEG26 | SEG26 | SEG26 | SEG26 | | 11 | SEG3 | SEG3 | SEG3 | SEG3 | SEG11 | SEG11 | SEG11 | SEG11 | SEG19 | SEG19 | SEG19 | SEG19 | SEG27 | SEG27 | SEG27 | SEG27 | | 12 | SEG4 | SEG4 | SEG4 | SEG4 | SEG12 | SEG12 | SEG12 | SEG12 | SEG20 | SEG20 | SEG20 | SEG20 | SEG28 | SEG28 | SEG28 | SEG28 | | 13 | SEG5 | SEG5 | SEG5 | SEG5 | SEG13 | SEG13 | SEG13 | SEG13 | SEG21 | SEG21 | SEG21 | SEG21 | SEG29 | SEG29 | SEG29 | SEG29 | | 14 | SEG6 | SEG6 | SEG6 | SEG6 | SEG14 | SEG14 | SEG14 | SEG14 | SEG22 | SEG22 | SEG22 | SEG22 | SEG30 | SEG30 | SEG30 | SEG30 | | 15 | SEG7 | SEG7 | SEG7 | SEG7 | SEG15 | SEG15 | SEG15 | SEG15 | SEG23 | SEG23 | SEG23 | SEG23 | SEG31 | SEG31 | SEG31 | SEG31 | | COM | СОМз | COM ₂ | COM ₁ | COM ₀ | СОМз | COM ₂ | COM ₁ | COM ₀ | СОМз | COM ₂ | COM1 | COM ₀ | СОМз | COM ₂ | COM1 | COM ₀ | Fig. 35 LCD RAM map # Table 12 LCD control registers | Table 12 L | CD Control registers | | | | | | | |------------|--|---|-----|----------------|--------------|--------------------|------------------| | | LCD control register L1 | | at | reset : 00002 | at power dow | n : state retained | R/W
TAL1/TL1A | | L13 | Internal dividing resistor for LCD power | (|) | 2r X 3, 2r X 2 | • | | | | LIS | supply selection bit (Note 2) | • | 1 | r X 3, r X 2 | | | | | L12 | LCD control bit | |) | Off | | | | | LIZ | | | 1 | On | | | | | | | | L10 | Duty | | Bias | | | L11 | | 0 | 0 | | Not av | ailable | | | | LCD duty and bias selection bits | 0 | 1 | 1/2 | | 1/2 | | | L10 | | 1 | 0 | 1/3 | | 1/3 | | | -10 | | | 1 | 1/4 | | 1/3 | | | | LCD control register L2 | at | reset : 00002 | at power down : state retained | W
TL2A | | | |------|--|----|-----------------------|--------------------------------|-----------|--|--| | L23 | VLC3/SEG0 pin function switch bit (Note 3) | 0 | SEG0 | | | | | | LZ3 | VLC3/SEG0 piri furiction switch bit (Note 3) | 1 | VLC3 | | | | | | L22 | VLC2/SEG1 pin function switch bit (Note 4) | 0 | SEG1 | | | | | | LZ2 | | 1 | VLC2 | | | | | | L21 | VI 04/CFC0 nin function quitab hit (Note 4) | 0 | SEG2 | | | | | | LZ1 | VLC1/SEG2 pin function switch bit (Note 4) | 1 | VLC1 | | | | | | 1.20 | Internal dividing resistor for LCD power | 0 | Internal dividing res | sistor valid | | | | | L20 | supply control bit | 1 | Internal dividing res | sistor invalid | | | | | | LCD control register L3 | | reset : 00002 | at power down : state retained | W
TL3A | |------|-----------------------------------|---|---------------|--------------------------------|-----------| | L33 | SEG24/P33-SEG27/P30 pin function | 0 | SEG24-SEG27 | | | | LJS | switch bit | 1 | P33-P30 | | | | L32 | SEG28/P23, SEG29/P22 pin function | 0 | SEG28, SEG29 | | | | L32 | switch bit | 1 | P23, P22 | | | | 1.24 | SEG30/P21 pin function | 0 | SEG30 | | | | L31 | switch bit | 1 | P21 | | | | L30 | SEG31/P20 pin function | 0 | SEG31 | | | | L30 | switch bit | 1 | P20 | | | Notes 1: "R" represents read enabled, and "W" represents write enabled. [&]quot;r (resistor) multiplied by 3" is used at 1/3 bias, and "r multiplied by 2" is used at 1/2 bias. VLC3 is connected to VDD internally when SEG0 pin is selected. Use internal dividing resistor when SEG1 and SEG2 pins are selected. Fig. 36 LCD controller/driver structure ## (5) LCD power supply circuit · Internal dividing resistor The 4554 Group has the internal dividing resistor for LCD power supply. When bit 0 of register L2 is set to "1", the internal dividing resistor is valid. However, when the LCD is turned off by setting bit 2 of register L1 to "0", the internal dividing resistor is turned off. The same six resistor (r) is prepared for the internal dividing resistor. According to the setting value of bit 3 of register L1 and using bias condition, the resistor is prepared as follows; - L13 = "0", 1/3 bias used: 2r X 3 = 6r - L13 = "0", 1/2 bias used: 2r X 2 = 4r - L13 = "1", 1/3 bias used: r X 3 = 3r - L13 = "1", 1/2 bias used: r X 2 = 2r #### • VLC3/SEG0 pin The selection of VLC3/SEG0 pin function is controlled with the bit 3 of register L2. When the VLC3 pin function is selected, apply voltage of VLC3 < VDD to the pin externally. When the SEGo pin function is selected, VLc3 is connected to \mbox{VDD} internally. #### • VLC2/SEG1, VLC1/SEG2 pin The selection of VLc2/SEG1 pin function is controlled with the bit 2 of register L2. The selection of VLC1/SEG2 pin function is controlled with the bit 1 of register L2. When the VLC2 pin and VLC1 pin functions are selected and the internal dividing resistor is not used, apply voltage of 0<VLC1<VLC2<VLC3 to these pins. Short the VLC2 pin and VLC1 pin at 1/2 bias. When the VLC2 pin and VLC1 pin functions are selected and the internal dividing resistor is used, the dividing voltage value generated internally is output from the VLC1 pin and VLC2 pin. The VLC2 pin and VLC1 pin has the same electric potential at 1/2 bias. When SEG1 and SEG2 pin function is selected, use the internal dividing resistor. In this time, VLC2 and VLC1 are connected to the generated dividing voltage. #### **RESET FUNCTION** System reset is performed by applying "L" level to RESET pin for 1 machine cycle or more when the following condition is satisfied; the value of supply voltage is the minimum value or more of the recommended operating conditions. Then when "H" level is applied to RESET pin, software starts from address 0 in page 0. Fig. 37 Reset release timing Fig. 38 RESET pin input waveform and reset operation ## (1) Power-on reset Reset can be automatically performed at power on (power-on reset) by the built-in power-on reset circuit. When the built-in power-on reset circuit is used, the time for the supply voltage to rise from 0 V must be set to 100 μs or less. If the rising time ex- ceeds 100 μ s, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum operating voltage. Fig. 39 Power-on reset circuit example Table 13 Port state at reset | Name | Function | State | |---------------------|-------------|--------------------------------| | D0-D6 | D0-D6 | High-impedance (Notes 1, 2) | | D7/CNTR0 | D7 | High-impedance (Notes 1, 2) | | D8/INT0, D9/INT1 | D8, D9 | High-impedance (Note 1) | | P00-P03 | P00-P03 | High-impedance (Notes 1, 2, 3) | | P10-P13 | P10-P13 | High-impedance (Notes 1, 2, 3) | | SEG31/P20-SEG28/P23 | SEG31-SEG28 | VLC3 (VDD) level | | SEG27/P30-SEG24/P33 | SEG27-SEG24 | VLC3 (VDD) level | | SEG0/VLC3-SEG2/VLC1 | SEG0-SEG2 | VLC3 (VDD) level | | SEG3-SEG23 | SEG3-SEG23 | VLC3 (VDD) level | | COM0-COM3 | COMo-COM3 | VLC3 (VDD) level | | C/CNTR1 | С | "L" (Vss) level | Notes 1: Output latch is set to "1." - 2: Output structure is N-channel open-drain. - 3: Pull-up transistor is turned OFF. # (2) Internal state at reset Figure 40 shows internal state at reset (they are the same after system is released from reset). The contents of timers, registers, flags and RAM except shown in Figure 40 are undefined, so set the initial value to them. | Program counter (PC) | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | |---|---------------------------------------| | Address 0 in page 0 is set to program counter. | | | Interrupt enable flag (INTE) | | | Power down flag (P) | <u> </u> | | • External 0 interrupt request flag (EXF0) | | | External 1 interrupt request flag (EXF1) | | | Interrupt control register V1 | | | Interrupt control register V2 | | | • Interrupt control register I1 | | | Interrupt control register I2 | | | • Timer 1 interrupt request flag (T1F) | | | • Timer 2 interrupt request flag (T2F) | | | • Timer 3 interrupt request flag (T3F) | <u> </u> | | • Timer 4 interrupt request flag (T4F) | <u>=</u> | | • Timer 5 interrupt request flag (T5F) | | | Watchdog timer flags (WDF1, WDF2) | | | Watchdog timer enable flag (WEF) | | | Timer control register PA | | | Timer control register YA Timer control register W1 | · · · · · · · · · · · · · · · · · · · | | Timer control register W2 | ` '' ' | | Timer control register W2 Timer control register W3 | | | Timer control register W4 | ` ' ' | | | | | Timer control register W5 Timer control register W6 | | | - | | | Clock control register MR | | | LCD control register L1 | | | LCD control register L2 | | | LCD control register L3 | | | Key-on wakeup control register K0 | | | Key-on wakeup control register K1 | | | Key-on wakeup control register K2 | | | Pull-up control register PU0 | | | Pull-up control register PU1 | | | Port output structure control register FR0 | | | Port output structure control register FR1 | | | Port output structure control register FR2 | | | Carry flag (CY) | 0 | | Register A | 0 0 0 0 | | Register B | 0000 | | Register D | | | Register E | X X X X X X X X | | Register X | 0 0 0 0 | | Register Y | 0 0 0 0 | | Register Z | X X | | Stack pointer (SP) | | | Operation source clock | Ring oscillator (operating) | | Ceramic resonator circuit | Operating | | | | #### **VOLTAGE DROP DETECTION CIRCUIT** The built-in voltage drop detection circuit is designed to detect a drop in voltage and to reset the microcomputer if the supply voltage drops below a set value. Fig. 41 Voltage drop detection reset circuit Fig. 42 Voltage drop detection circuit operation waveform Table 14 Voltage drop detection circuit operation state | VDCE pin | At CPU operating | At power down | At power down | |----------|------------------|------------------------------------|--------------------------------| | | | (SVDE instruction is not executed) | (SVDE instruction is executed) | | "L" | Invalid | Invalid | Invalid | | "H" | Valid
| Invalid | Valid | #### POWER DOWN FUNCTION The 4554 Group has 2-type power down functions. System enters into each power down state by executing the following instructions. | Clock operating mode | EPOF and POF instructions | |----------------------|----------------------------| | RAM back-up mode | EPOF and POF2 instructions | When the EPOF instruction is not executed before the POF or POF2 instruction is executed, these instructions are equivalent to the NOP instruction. # (1) Clock operating mode The following functions and states are retained. - RAM - Reset circuit - XCIN—XCOUT oscillation - · LCD display - Timer 5 # (2) RAM back-up mode The following functions and states are retained. - RAM - Reset circuit ## (3) Warm start condition The system returns from the power down state when; - External wakeup signal is input - Timer 5 underflow occurs in the power down mode. In either case, the CPU starts executing the software from address 0 in page 0. In this case, the P flag is "1." ## (4) Cold start condition The CPU starts executing the software from address 0 in page 0 when: - reset pulse is input to RESET pin, - reset by watchdog timer is performed, or - reset by the voltage drop detection circuit is performed. In this case, the P flag is "0." ## (5) Identification of the start condition Warm start or cold start can be identified by examining the state of the power down flag (P) with the SNZP instruction. The warm start condition from the clock operating mode can be identified by examining the state of T5F flag. Table 15 Functions and states retained at power down | | Power do | wn mode | |--|------------|------------| | Function | Clock | RAM | | | operating | back-up | | Program counter (PC), registers A, B, | ., | ., | | carry flag (CY), stack pointer (SP) (Note 2) | × | × | | Contents of RAM | 0 | 0 | | Interrupt control registers V1, V2 | X | X | | Interrupt control registers I1, I2 | 0 | 0 | | Selected oscillation circuit | 0 | 0 | | Clock control register MR | 0 | 0 | | Timer 1 to timer 4 functions | (Note 3) | (Note 3) | | Timer 5 function | 0 | 0 | | Timer LC function | 0 | (Note 3) | | Watchdog timer function | X (Note 4) | X (Note 4) | | Timer control registers PA, W4 | X | X | | Timer control registers W1 to W3, W5, W6 | 0 | 0 | | LCD display function | 0 | (Note 5) | | LCD control registers L1 to L3 | 0 | 0 | | Voltage drop detection circuit | (Note 6) | (Note 6) | | Port level | 0 | 0 | | Pull-up control registers PU0, PU1 | 0 | 0 | | Key-on wakeup control registers K0 to K2 | 0 | 0 | | Port output format control registers | 0 | 0 | | FR0 to FR3 | | | | External interrupt request flags | X | × | | (EXF0, EXF1) | | | | Timer interrupt request flags (T1F to T4F) | (Note 3) | (Note 3) | | Timer interrupt request flag (T5F) | 0 | 0 | | Interrupt enable flag (INTE) | X | X | | Watchdog timer flags (WDF1, WDF2) | X (Note 4) | X (Note 4) | | Watchdog timer enable flag (WEF) | X (Note 4) | X (Note 4) | Notes 1:"O" represents that the function can be retained, and "X" represents that the function is initialized. Registers and flags other than the above are undefined at RAM back-up, and set an initial value after returning. - 2: The stack pointer (SP) points the level of the stack register and is initialized to "7" at RAM back-up. - 3: The state of the timer is undefined. - 4: Initialize the watchdog timer with the WRST instruction, and then go into the power down state. - 5: LCD is turned off. - 6: When the SVDE instruction is executed while the VDCE pin is in the "H" state, this function is valid at power down. ## (6) Return signal An external wakeup signal or timer 5 interrupt request flag (T5F) is used to return from the clock operating mode. An external wakeup signal is used to return from the RAM back-up mode because the oscillation is stopped. Table 16 shows the return condition for each return source. ## (7) Control registers - · Key-on wakeup control register K0 - Register K0 controls the port P0 key-on wakeup function. Set the contents of this register through register A with the TK0A instruction. In addition, the TAK0 instruction can be used to transfer the contents of register K0 to register A. - Key-on wakeup control register K1 Register K1 controls the port P1 key-on wakeup function. Set the contents of this register through register A with the TK1A instruction. In addition, the TAK1 instruction can be used to transfer the contents of register K0 to register A. - Key-on wakeup control register K2 Register K2 controls the INTO and INT1 pin key-on wakeup function. Set the contents of this register through register A with the TK2A instruction. In addition, the TAK2 instruction can be used to transfer the contents of register K2 to register A. - Pull-up control register PU0 - Register PU0 controls the ON/OFF of the port P0 pull-up transistor. Set the contents of this register through register A with the TPU0A instruction. In addition, the TAPU0 instruction can be used to transfer the contents of register PU0 to register A. - Pull-up control register PU1 - Register PU1 controls the ON/OFF of the port P1 pull-up transistor. Set the contents of this register through register A with the TPU1A instruction. In addition, the TAPU1 instruction can be used to transfer the contents of register PU1 to register A. - External interrupt control register I1 - Register I1 controls the valid waveform of the external 0 interrupt, the input control of INT0 pin and the return input level. Set the contents of this register through register A with the TI1A instruction. In addition, the TAI1 instruction can be used to transfer the contents of register I1 to register A. - External interrupt control register I2 - Register I2 controls the valid waveform of the external 1 interrupt, the input control of INT1 pin and the return input level. Set the contents of this register through register A with the TI2A instruction. In addition, the TAI2 instruction can be used to transfer the contents of register I2 to register A. Table 16 Return source and return condition | | Return source | Return condition | Remarks | |-----------------|------------------------------------|---|--| | signal | Ports P00–P03
Ports P10–P13 | Return by an external "L" level input. | The key-on wakeup function can be selected by one port unit. Set the port using the key-on wakeup function to "H" level before going into the power down state. | | External wakeup | INT0 pin
INT1 pin | "L" level input, or rising edge | Select the return level ("L" level or "H" level) with register I1 (I2) and return condition (return by level or edge) with register K2 according to the external state before going into the power down state. | | | ner 5 interrupt
uest flag (T5F) | Return by timer 5 underflow or by setting T5F to "1". | Clear T5F with the SNZT5 instruction before system enters into the power down state. | | | | | When system enters into the power down state while T5F is "1", system returns from the state immediately because it is recognized as return condition. | Fig. 43 State transition Fig. 44 Set source and clear source of the P flag Fig. 45 Start condition identified example using the SNZP instruction Table 17 Key-on wakeup control register, pull-up control register and interrupt control register | | Key-on wakeup control register K0 | at | reset: 00002 | at power down : state retained | R/W
TAK0/
TK0A | | | |------|-----------------------------------|----|------------------------|--------------------------------|----------------------|--|--| | K03 | Port P03 key-on wakeup | 0 | Key-on wakeup not | Key-on wakeup not used | | | | | KU3 | control bit | 1 | ed | | | | | | 1/0- | Port P02 key-on wakeup | | Key-on wakeup not used | | | | | | K02 | control bit | 1 | Key-on wakeup use | | | | | | I/O+ | Port P01 key-on wakeup | 0 | Key-on wakeup not used | | | | | | K01 | control bit | 1 | Key-on wakeup used | | | | | | I/Os | Port P00 key-on wakeup | 0 | Key-on wakeup not | used | | | | | K00 | control bit | 1 | Key-on wakeup use | ed | | | | | | Key-on wakeup control register K1 | | reset : 00002 | at power down : state retained | R/W
TAK1/
TK1A | |-------|-----------------------------------|-------------------------|--------------------|--------------------------------|----------------------| | IZ4 o | Port P13 key-on wakeup | 0 | Key-on wakeup use | ed | | | K13 | control bit | 1 | Key-on wakeup not | used | | | I/d o | Port P12 key-on wakeup | 0 Key-on wakeup not use | | used | | | K12 | control bit | 1 | Key-on wakeup use | ed | | | 1/4 / | Port P11 key-on wakeup | 0 | Key-on wakeup not | ot used | | | K11 | K11 control bit | | Key-on wakeup used | | | | IZ4 o | Port P10 key-on wakeup | 0 | Key-on wakeup not | used | | | K10 | K10 control bit | | Key-on wakeup use | ed | | | | Key-on wakeup control register K2 | | reset: 00002 | at power down : state retained | R/W
TAK2/
TK2A | |-----|-----------------------------------|--------------------------|-------------------|--------------------------------|----------------------| | K23 | INT1 pin | 0 | Return by level | | | | N23 | return condition selection bit | 1 | Return by edge | | | | K22 | INT1 pin | 0 Key-on wakeup not | | t used | | | N22 | key-on wakeup control bit | 1 | Key-on wakeup use | ed | | | K21 | INT0 pin | 0 | Return by level | | | | NZ1 | return condition selection bit | 1 | Return by edge | | | | K20 | INT0 pin | 0 Key-on wakeup not used | | used | | | N20 | key-on wakeup control bit | 1 | Key-on wakeup use | ed | · | Note: "R" represents read enabled, and "W" represents write enabled. | | Pull-up control register PU0 | | reset : 00002 | at power down : state
retained | R/W
TAPU0/
TPU0A | |-------|------------------------------|--------------------------|--------------------------|--------------------------------|------------------------| | DLIO | Port P03 pull-up transistor | 0 | Pull-up transistor O | FF | | | PU03 | control bit | 1 | Pull-up transistor O | N | | | DUIG | Port P02 pull-up transistor | 0 | 0 Pull-up transistor OFF | | | | PU02 | control bit | 1 | Pull-up transistor O | N | | | DUO | Port P01 pull-up transistor | 0 | Pull-up transistor O | FF | | | PU01 | control bit | 1 | Pull-up transistor O | N | | | DUIOs | Port P00 pull-up transistor | 0 Pull-up transistor OFF | | | | | PU00 | control bit | 1 | Pull-up transistor O | N | | | | Pull-up control register PU1 | | reset : 00002 | at power down : state retained | R/W
TAPU1/
TPU1A | |-------|------------------------------|--------------------------|-------------------------|--------------------------------|------------------------| | DLIAG | Port P13 pull-up transistor | 0 | Pull-up transistor O | FF | | | PU13 | control bit | 1 | Pull-up transistor O | N | | | DUIA | Port P12 pull-up transistor | 0 Pull-up transistor OFF | | FF | | | PU12 | control bit | 1 | Pull-up transistor O | N | | | DI.I. | Port P11 pull-up transistor | 0 | Pull-up transistor O | FF | | | PU11 | control bit | 1 | 1 Pull-up transistor ON | | | | DUIA | Port P10 pull-up transistor | 0 Pull-up transistor OFF | | | | | PU10 | control bit | 1 | Pull-up transistor O | N | | | | Interrupt control register I1 | | reset : 00002 | at power down : state retained | R/W
TAI1/TI1A | |-------------|--|---------------------|--|--|------------------| | l13 | IAC INTO sin insurt control bit (Note 2) | | INT0 pin input disa | bled | | | 113 | INT0 pin input control bit (Note 2) | 1 | INT0 pin input ena | bled | | | l12 | Interrupt valid waveform for INT0 pin/ | 0 | Falling waveform/" instruction) | L" level ("L" level is recognized with | the SNZI0 | | 112 | return level selection bit (Note 2) | 1 | Rising waveform/"H" level ("H" level is recognized with the SNZIO instruction) | | | | 14.4 | INTO pin added detection circuit control bit | 0 | One-sided edge de | etected | | | I 11 | INT0 pin edge detection circuit control bit | 1 | Both edges detected | | | | l10 | INT0 pin Timer 1 count start synchronous | 0 Timer 1 count sta | | synchronous circuit not selected | | | 110 | circuit selection bit | 1 | Timer 1 count start | synchronous circuit selected | | | | Interrupt control register I2 | | reset : 00002 | at power down : state retained | R/W
TAI2/TI2A | |-----------------|---|-------------------------------------|---|--|------------------| | 123 | INT1 pin input control bit (Note 2) | 0 | INT1 pin input disa | abled | | | 123 | 123 INT i pin input control bit (Note 2) | 1 | INT1 pin input ena | bled | | | | | 0 | Falling waveform/" | L" level ("L" level is recognized with | the SNZI1 | | 122 | Interrupt valid waveform for INT1 pin/ | 0 | instruction) | | | | 122 | return level selection bit (Note 2) | | Rising waveform/"H" level ("H" level is recognized with the SNZI1 | | | | | | ' | instruction) | | | | l2 ₁ | INT1 pin edge detection circuit control bit | 0 | One-sided edge de | etected | | | 121 | in i i pin eage detection circuit control bit | 1 | Both edges detected | | | | 120 | INT1 pin Timer 3 count start synchronous | 0 Timer 3 count start synchronous c | | t synchronous circuit not selected | | | 120 | circuit selection bit | 1 | Timer 3 count start | t synchronous circuit selected | | Notes 1: "R" represents read enabled, and "W" represents write enabled. 2: When the contents of I12, I13 I22 and I23 are changed, the external interrupt request flag (EXF0, EXF1) may be set. #### **CLOCK CONTROL** The clock control circuit consists of the following circuits. - Ring oscillator (internal oscillator) - · Ceramic resonator - · RC oscillation circuit - · Quartz-crystal oscillation circuit - Multi-plexer (clock selection circuit) - · Frequency divider - Internal clock generating circuit The system clock and the instruction clock are generated as the source clock for operation by these circuits. Figure 46 shows the structure of the clock control circuit. The 4554 Group operates by the ring oscillator clock (f(RING)) which is the internal oscillator after system is released from reset. Also, the ceramic resonator or the RC oscillation can be used for the main clock (f(XIN)) of the 4554 Group. The CMCK instruction or CRCK instruction is executed to select the ceramic resonator or RC oscillator, respectively. The quartz-crystal oscillator can be used for sub-clock (f(XCIN)). Fig. 46 Clock control circuit structure # (1) Main clock generating circuit (f(XIN)) The ceramic resonator or RC oscillation can be used for the main clock of this MCU. After system is released from reset, the MCU starts operation by the clock output from the ring oscillator which is the internal oscillator. When the ceramic resonator is used, execute the CMCK instruction. When the RC oscillation is used, execute the CRCK instruction. The oscillation circuit by the CMCK or CRCK instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these two instructions is valid. Other oscillation circuit and the ring oscillator stop. Execute the CMCK or the CRCK instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended). Also, when the CMCK or the CRCK instruction is not executed in program, this MCU operates by the ring oscillator. # (2) Ring oscillator operation When the MCU operates by the ring oscillator as the main clock (f(XIN)) without using the ceramic resonator or the RC oscillator, connect XIN pin to VSS and leave XOUT pin open (Figure 48). The clock frequency of the ring oscillator depends on the supply voltage and the operation temperature range. Be careful that variable frequencies when designing application products. ## (3) Ceramic resonator When the ceramic resonator is used as the main clock (f(XIN)), connect the ceramic resonator and the external circuit to pins XIN and XOUT at the shortest distance. Then, execute the CMCK instruction. A feedback resistor is built in between pins XIN and XOUT (Figure 49). ## (4) RC oscillation When the RC oscillation is used as the main clock (f(XIN)), connect the XIN pin to the external circuit of resistor R and the capacitor C at the shortest distance and leave XOUT pin open. Then, execute the CRCK instruction (Figure 50). The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits. Fig. 47 Switch to ceramic resonance/RC oscillation Fig. 48 Handling of XIN and XOUT when operating ring oscillator Fig. 49 Ceramic resonator external circuit Fig. 50 External RC oscillation circuit ## (5) External clock When the external clock signal is used as the main clock (f(XIN)), connect the XIN pin to the clock source and leave XOUT pin open. Then, execute the CMCK instruction (Figure 51). Be careful that the maximum value of the oscillation frequency when using the external clock differs from the value when using the ceramic resonator (refer to the recommended operating condition). Also, note that the power down mode (POF and POF2 instructions) cannot be used when using the external clock. # (6) Sub-clock generating circuit f(XCIN) Sub-clock signal f(XCIN) is obtained by externally connecting a quartz-crystal oscillator. Connect this external circuit and a quartz-crystal oscillator to pins XCIN and XCOUT at the shortest distance. A feedback resistor is built in between pins XCIN and XCOUT (Figure 52). ## (7) Clock control register MR Register MR controls system clock. Set the contents of this register through register A with the TMRA instruction. In addition, the TAMR instruction can be used to transfer the contents of register MR to register A. Fig. 51 External clock input circuit Fig. 52 External quartz-crystal circuit Table 18 Clock control register MR | Clock control register MR | | at reset : 11002 | | reset : 11002 | at power down : state retained | R/W
TAMR/
TMRA | | |---------------------------|--|------------------|-----|-----------------------------|--------------------------------|----------------------|--| | | | MRз | MR2 | | Operation mode | | | | MR3 | | 0 | 0 | Through mode (free | quency not divided) | | | | | Operation mode selection bits | 0 | 1 | Frequency divided | by 2 mode | | | | MR ₂ | | 1 | 0 | Frequency divided by 4 mode | | | | | 1411.42 | | 1 | 1 | Frequency divided | by 8 mode | | | | MR1 | Main clock oscillation circuit control bit | (|) | Main clock oscillation | on enabled | | | | IVIIX | Wain clock oscillation circuit control bit | 1 | 1 | Main clock oscillation | on stop | | | | MRo | System alook coloction hit | (|) | Main clock (f(XIN) o | r f(RING)) | | | | IVIRO | System clock selection bit | 1 | 1 | Sub-clock (f(XCIN)) | | | | Note: "R" represents read enabled, and "W" represents write enabled. ## **ROM ORDERING METHOD** - 1.Mask ROM Order Confirmation Form• - 2.Mark Specification Form• - 3.Data to be written to ROM, in EPROM form (three identical copies) or one floppy disk. - •For the mask ROM confirmation and the mark specifications, refer to the "Renesas Technology Corp." Homepage (http://www.renesas.com/en/rom). #### LIST OF PRECAUTIONS #### ① Noise and latch-up prevention Connect a capacitor on the following condition to prevent noise and latch-up: - connect a bypass capacitor (approx. 0.1 μ F) between pins VDD and Vss at the shortest distance, -
equalize its wiring in width and length, and - use relatively thick wire. In the One Time PROM version, CNVss pin is also used as VPP pin. Accordingly, when using this pin, connect this pin to Vss through a resistor about 5 k Ω (connect this resistor to CNVss/ VPP pin as close as possible). ## 2 Register initial values 1 The initial value of the following registers are undefined after system is released from reset. After system is released from reset, set initial values. - Register Z (2 bits) - Register D (3 bits) - Register E (8 bits) ## ③ Register initial values 2 The initial value of the following registers are undefined at RAM backup. After system is returned from RAM back-up, set initial values. - Register Z (2 bits) - Register X (4 bits) - Register Y (4 bits) - Register D (3 bits) - Register E (8 bits) #### Stack registers (SKs) Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together. #### ⑤ Prescaler Stop counting and then execute the TABPS instruction to read from prescaler data. Stop counting and then execute the TPSAB instruction to set prescaler data. #### ® Timer count source Stop timer 1, 2, 3, 4 and LC counting to change its count source. #### ② Reading the count value Stop timer 1, 2, 3 or 4 counting and then execute the data read instruction (TAB1, TAB2, TAB3, TAB4) to read its data. ## ®Writing to the timer Stop timer 1, 2, 3, 4 or LC counting and then execute the data write instruction (T1AB, T2AB, T3AB, T4AB, TLCA) to write its data #### Writing to reload register R1, R3, R4H When writing data to reload register R1, reload register R3 or reload regiser R4H while timer 1, timer 3 or timer 4 is operating, avoid a timing when timer 1, timer 3 or timer 4 underflows. ## © Timer 4 Avoid a timing when timer 4 underflows to stop timer 4. When "H" interval extension function of the PWM signal is set to be "valid", set "1" or more to reload register R4H. ## 11 Timer 5 Stop timer 5 counting to change its count source. ## ©Timer input/output pin Set the port C output latch to "0" to output the PWM signal from C/CNTR pin. #### ®Watchdog timer - The watchdog timer function is valid after system is released from reset. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously, and clear the WEF flag to "0" to stop the watchdog timer function. - The watchdog timer function is valid after system is returned from the power down state. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously every system is returned from the power down state, and stop the watchdog timer function. - When the watchdog timer function and power down function are used at the same time, execute the WRST instruction before system enters into the power down state and initialize the flag WDF1 # (1) Multifunction - Be careful that the output of ports D8 and D9 can be used even when INT0 and INT1 pins are selected. - Be careful that the input/output of port D7 can be used even when input of CNTR0 pin are selected. - Be careful that the input of port D7 can be used even when output of CNTR0 pin are selected. - Be careful that the "H" output of port C can be used even when output of CNTR1 pin are selected. #### ® Program counter Make sure that the PCH does not specify after the last page of the built-in ROM. ## [®] D8/INT0 pin - Note [1] on bit 3 of register I1 - When the input of the INTO pin is controlled with the bit 3 of register I1 in software, be careful about the following notes. - Depending on the input state of the Da/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 53⁽¹⁾) and then, change the bit 3 of register I1. - In addition, execute the SNZ0 instruction to clear the EXF0 flag after executing at least one instruction (refer to Figure 53②). - Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 53³). Fig. 53 External 0 interrupt program example-1 - Note [2] on bit 3 of register I1 - When the bit 3 of register I1 is cleared, the RAM back-up mode is selected and the input of INT0 pin is disabled, be careful about the following notes. - When the key-on wakeup function of INT0 pin is not used (register K20 = "0"), clear bits 2 and 3 of register I1 before system enters to the RAM back-up mode. (refer to Figure 54①). ``` LA 0 ; (00XX2) TI1A ; Input of INT0 disabled① DI EPOF POF2 ; RAM back-up X: these bits are not used here. ``` Fig. 54 External 0 interrupt program example-2 #### Note on bit 2 of register I1 When the interrupt valid waveform of the D8/INT0 pin is changed with the bit 2 of register I1 in software, be careful about the following notes. - Depending on the input state of the Da/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 55⁽¹⁾) and then, change the bit 2 of register I1. - In addition, execute the SNZ0 instruction to clear the EXF0 flag after executing at least one instruction (refer to Figure 55²). - Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 55³). Fig. 55 External 0 interrupt program example-3 #### 1 D9/INT1 pin • Note [1] on bit 3 of register I2 When the input of the INT1 pin is controlled with the bit 3 of register I2 in software, be careful about the following notes. Depending on the input state of the De/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 3 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 56⁽¹⁾) and then, change the bit 3 of register I2. In addition, execute the SNZ1 instruction to clear the EXF1 flag after executing at least one instruction (refer to Figure 56②). Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 56³). Fig. 56 External 1 interrupt program example-1 - Note [2] on bit 3 of register I2 - When the bit 3 of register I2 is cleared, the RAM back-up mode is selected and the input of INT1 pin is disabled, be careful about the following notes. - When the key-on wakeup function of INT1 pin is not used (register K22 = "0"), clear bits 2 and 3 of register I2 before system enters to the RAM back-up mode. (refer to Figure 57①). ``` LA 0 ; (00××2) T12A ; Input of INT1 disabled① DI EPOF POF2 ; RAM back-up X: these bits are not used here. ``` Fig. 57 External 1 interrupt program example-2 - Note on bit 2 of register I2 - When the interrupt valid waveform of the D9/INT1 pin is changed with the bit 2 of register I2 in software, be careful about the following notes. - Depending on the input state of the D9/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 2 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 58⁽¹⁾) and then, change the bit 2 of register I2. In addition, execute the SNZ1 instruction to clear the EXF1 flag after executing at least one instruction (refer to Figure 58[®]). Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 583). Fig. 58 External 1 interrupt program example-3 #### ® POF and POF2 instructions When the POF or POF2 instruction is executed continuously after the EPOF instruction, system enters the power down state. Note that system cannot enter the power down state when executing only the POF or POF2 instruction. Be sure to disable interrupts by executing the DI instruction before executing the EPOF instruction and the POF or POF2 instruction continuously. #### Power-on reset When the built-in power-on reset circuit is used, the time for the supply voltage to rise from 0 V to 2.0 V must be set to 100 μs or less. If the rising time exceeds 100 μs , connect a capacitor between the $\overline{\text{RESET}}$ pin and Vss at the shortest distance, and input "L" level to $\overline{\text{RESET}}$ pin until the value of supply voltage reaches the minimum operating voltage. #### @Clock control Execute the CMCK or the CRCK instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended). The oscillation circuit by the CMCK or CRCK instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these two instruction is valid. Other oscillation circuits and the ring oscillator stop. #### ⊕ Ring oscillator The clock frequency of the ring oscillator depends on the supply voltage and the operation temperature range. Be careful that variable frequencies when designing application products. Also, the oscillation stabilize wait time after system is released from reset is generated by the ring oscillator clock. When considering the oscillation stabilize wait time after system is released from reset, be careful that the variable frequency of the ring oscillator clock. #### © External clock When the external signal clock is used as the source oscillation (f(XIN)), note that the power down mode (POF and POF2 instructions) cannot be used. ## © Difference between Mask ROM version and One Time PROM version Mask ROM version and One Time PROM version have some difference of the following characteristics within the limits of an electrical property by difference of a manufacture
process, builtin ROM, and a layout pattern. - a characteristic value - a margin of operation - the amount of noise-proof - noise radiation, etc., Accordingly, be careful of them when swithcing. # **CONTROL REGISTERS** | | Interrupt control register V1 | | reset : 00002 | at power down: 00002 | R/W
TAV1/TV1A | |------|-----------------------------------|---|---------------------|-------------------------------|------------------| | V13 | V/4 - Times O intermed analys hit | | Interrupt disabled | (SNZT2 instruction is valid) | | | V 13 | Timer 2 interrupt enable bit | 1 | Interrupt enabled (| SNZT2 instruction is invalid) | | | V12 | Timer 1 interrupt enable bit | 0 | Interrupt disabled | (SNZT1 instruction is valid) | | | V 12 | Timer i interrupt enable bit | 1 | Interrupt enabled (| SNZT1 instruction is invalid) | | | V11 | External 1 interrupt enable bit | 0 | Interrupt disabled | (SNZ1 instruction is valid) | | | V 11 | External i interrupt enable bit | 1 | Interrupt enabled (| SNZ1 instruction is invalid) | | | 1/40 | External 0 interrupt anable bit | 0 | Interrupt disabled | (SNZ0 instruction is valid) | | | V10 | External 0 interrupt enable bit | 1 | Interrupt enabled (| SNZ0 instruction is invalid) | | | | Interrupt control register V2 | | reset : 00002 | at power down : 00002 | R/W
TAV2/TV2A | | |------|-------------------------------|---|--|--------------------------------|------------------|--| | 1/00 | Timer 4 interrupt enable bit | 0 | Interrupt disabled | (SNZT4 instruction is valid) | | | | V23 | Timer 4 interrupt enable bit | 1 | Interrupt enabled (| (SNZT4 instruction is invalid) | | | | 1/00 | Not used | 0 | This bit has no function, but read/write is enabled. | | | | | V22 | Not used | 1 | This bit has no function, but read/write is enabled. | | | | | 1/04 | Timer 5 interrupt enable bit | 0 | Interrupt disabled | (SNZT5 instruction is valid) | | | | V21 | Timer 3 interrupt enable bit | 1 | Interrupt enabled (| (SNZT5 instruction is invalid) | | | | 1/00 | Timor 3 interrupt enable hit | 0 | Interrupt disabled | (SNZT3 instruction is valid) | | | | V20 | Timer 3 interrupt enable bit | 1 | Interrupt enabled (| (SNZT3 instruction is invalid) | | | | | Interrupt control register I1 | | reset : 00002 | at power down : state retained | R/W
TAI1/TI1A | |-----|--|----------------------|---|--------------------------------------|------------------| | l13 | I13 INT0 pin input control bit (Note 2) | | INT0 pin input disa | abled | | | 113 | in 10 pin input control bit (Note 2) | 1 | INT0 pin input ena | bled | | | l12 | Interrupt valid waveform for INT0 pin/ | 0 | Falling waveform/"L" level ("L" level is recognized with the SNZI0 instruction) | | the SNZI0 | | 112 | return level selection bit (Note 2) | 1 | Rising waveform/"H" level ("H" level is recogni instruction) | | the SNZI0 | | l11 | INT0 pin edge detection circuit control bit | 0 | One-sided edge detected | | | | ''' | in 10 pin eage detection circuit control bit | 1 | Both edges detected | | | | l10 | INT0 pin Timer 1 count start synchronous | 0 Timer 1 count star | | art synchronous circuit not selected | | | 110 | circuit selection bit | 1 | Timer 1 count star | t synchronous circuit selected | | | | Interrupt control register I2 | | reset : 00002 | at power down : state retained | R/W
TAI2/TI2A | |-----|--|----------------------|---|--|------------------| | 123 | INT1 pin input control bit (Note 2) | 0 | INT1 pin input disa | abled | | | 123 | INT F pin input control bit (Note 2) | 1 | INT1 pin input ena | bled | | | | Interrupt valid waveform for INT1 pin/ | 0 | Falling waveform/" | L" level ("L" level is recognized with | the SNZI1 | | 122 | | 0 | instruction) | | | | 122 | return level selection bit (Note 2) | 4 | Rising waveform/"H" level ("H" level is recognized with the SNZI1 | | | | | | ' | instruction) | | | | I21 | INT1 pin edge detection circuit control bit | 0 | One-sided edge detected | | | | 121 | INT I pin eage detection circuit control bit | 1 | Both edges detected | | | | 120 | INT1 pin Timer 3 count start synchronous | 0 Timer 3 count star | | t synchronous circuit not selected | | | 120 | circuit selection bit | 1 | Timer 3 count start | t synchronous circuit selected | | Notes 1: "R" represents read enabled, and "W" represents write enabled. 2: When the contents of I12, I13 I22 and I23 are changed, the external interrupt request flag (EXF0, EXF1) may be set. | | Clock control register MR | | at reset : 11002 | | at power down : state retained | R/W
TAMR/
TMRA | |-----------------|--|-----|------------------|-----------------------------|--------------------------------|----------------------| | | | MRз | MR2 | | Operation mode | | | MR3 | | 0 | 0 | Through mode | | | | | Operation mode selection bits MR2 | 0 | 1 | Frequency divided b | oy 2 mode | | | MR ₂ | | 1 | 0 | Frequency divided by | oy 4 mode | | | | | 1 | 1 | Frequency divided b | by 8 mode | | | MR1 | Main clock oscillation circuit control bit | C |) | Main clock oscillation | on enabled | | | IVIIX | Main clock oscillation circuit control bit | 1 | | Main clock oscillation stop | | | | MRo | System clack salaction bit | С |) | Main clock (f(XIN) o | r f(RING)) | | | IVITO | System clock selection bit | 1 | | Sub-clock (f(XCIN)) | | | | Timer control register PA | | | at reset : 02 | at power down : 02 | W
TPAA | |---------------------------|-----------------------|---|------------------------|--------------------|-----------| | PA ₀ | Prescaler control bit | 0 | Stop (state initialize | ed) | | | FAU | | 1 | Operating | | | | | Timer control register W1 | | at reset : 00002 | | at power down : state retained | R/W
TAW1/TW1A | |--------|---|-----|----------------------|--|--------------------------------|------------------| | W13 | Timer 1 count auto-stop circuit selection | 0 | | Timer 1 count auto-stop circuit not selected | | | | **** | bit (Note 2) | | | Timer 1 count auto | -stop circuit selected | | | \/\/12 | W12 Timer 1 control bit | 0 | | Stop (state retained) | | | | VV 12 | Timer 1 control bit | , | 1 Operating | | | | | | | W11 | V11 W10 Count source | | | | | W11 | | 0 | 0 | Instruction clock (II | NSTCK) | | | | Timer 1 count source selection bits | 0 | 1 | Prescaler output (ORCLK) | | | | W10 | | 1 | 0 | Timer 5 underflow signal (T5UDF) | | | | | | 1 | 1 | CNTR0 input | | | | Timer control register W2 | | | at reset : 00002 | | at power down : state retained | R/W
TAW2/TW2A | |---------------------------|-------------------------------------|-------------|------------------|----------------------------------|--|------------------| | W23 | W23 CNTR0 output control bit | | О | Timer 1 underflow s | Timer 1 underflow signal divided by 2 output | | | VV23 | W25 CNTRO output control bit | 1 | | Timer 2 underflow s | signal divided by 2 output | | | W22 Timer 2 control bit | Timor 2 control bit | 0 | | Stop (state retained) | | | | V V Z Z | Timer 2 control bit | 1 Operating | | | | | | 1440 | | W21 | W20 | | Count source | | | W21 | | 0 | 0 | System clock (STC | System clock (STCK) | | | | Timer 2 count source selection bits | 0 | 1 | Prescaler output (ORCLK) | | | | W20 | | 1 | 0 | Timer 1 underflow signal (T1UDF) | | | | | | 1 | 1 | PWM signal (PWMOUT) | | | | | Timer control register W3 | | at reset : 00002 | | at power down : state retained | R/W
TAW3/TW3A | |-------|---|-----|------------------|--|--------------------------------|------------------| | W33 | Timer 3 count auto-stop circuit selection | 0 | | Timer 3 count auto-stop circuit not selected | | | | ***** | bit (Note 3) | | 1 | Timer 3 count auto | -stop circuit selected | | | W/32 | W32 Timer 3 control bit | 0 | | Stop (state retained) | | | | VV32 | Timer 3 control bit | ^ | 1 Operating | | | | | | | W31 | W30 | | Count source | | | W31 | Times 2 second second selection bits | 0 | 0 | PWM signal (PWMOUT) | | | | | Timer 3 count source selection bits | 0 | 1 | Prescaler output (C | Prescaler output (ORCLK) | | | W30 | (Note 4) | 1 | 0 | Timer 2 underflow signal (T2UDF) | | | | | | 1 | 1 | CNTR1 input | | | Notes 1: "R" represents read enabled, and "W" represents write enabled. - 2: This function is valid only when the timer 1 count start synchronous circuit is selected (I10="1"). 3: This function is valid only when the timer 3 count start synchronous circuit is selected (I20="1"). - 4: Port C output is invalid when CNTR1 input is selected for the timer 3 count source. | Timer control register W4 | | at reset : 00002 | | at power down : 00002 | R/W
TAW4/TW4A | | |------------------------------|---|------------------|--|-----------------------|------------------|--| | W43 CNTR1 output control bit | | 0 | CNTR1 output inva | CNTR1 output invalid | | | | VV43 | VV45 OTVITCI Surput Control bit | 1 | CNTR1 output valid | | | | | \M/4a | W42 PWM signal | 0 | PWM signal "H" interval expansion function invalid | | | | | VV42 | "H" interval expansion function control bit | 1 | PWM signal "H" interval expansion function valid | | | | | W41 | Timer 4 control bit | 0 | Stop (state retaine | d) | | | | VV41 | Timer 4 control bit | 1 | Operating | | | | | W40 | Timer 4 count source selection bit | 0 | XIN input | | | | | vv40 | Timer 4 count source selection bit | 1 | Prescaler output (0 | ORCLK) divided by 2
| | | | | Timer control register W5 | | at reset : 00002 | | at power down : state retained | R/W
TAW5/TW5A | |--------|------------------------------------|-----|------------------|-------------------------------------|-----------------------------------|------------------| | W53 | Not used | (|) | This bit has no fund | ction, but read/write is enabled. | | | | 1100 | | 1 | | , | | | \\\\52 | W52 Timer 5 control bit | 0 | | Stop (state initialized) | | | | VV32 | Times o defined bit | 1 | | Operating | | | | | | W51 | W50 | | Count value | | | W51 | | 0 | 0 | Underflow occurs e | very 8192 counts | | | | Timer 5 count value selection bits | 0 | 1 | Underflow occurs every 16384 counts | | | | W50 | Timel 3 count value selection bits | 1 | 0 | Underflow occurs every 32768 counts | | | | | | 1 | 1 | Underflow occurs e | very 65536 counts | | | Timer control register W6 | | at reset : 00002 | | at power down : state retained | R/W
TAW6/TW6A | | |---------------------------|-------------------------------------|------------------|--|--------------------------------|------------------|--| | W63 Timer LC control bit | | 0 | Stop (state retaine | d) | | | | Timer LC Control bit | Timer Lo control bit | 1 | Operating | | | | | W62 | Timer LC count source selection bit | 0 | Bit 4 (T54) of timer 5 | | | | | VV02 | Timer LC count source selection bit | 1 | Prescaler output (ORCLK) | | | | | W61 | CNTR1 output auto-control circuit | 0 | 0 CNTR1 output auto-control circuit not selected | | | | | VVO | selection bit | 1 | CNTR1 output auto-control circuit selected | | | | | W60 | D7/CNTR0 pin function selection bit | 0 | D7(I/O)/CNTR0 inp | out | | | | VV00 | (Note 2) | 1 | CNTR input/output | t/D7 (input) | | | Notes 1: "R" represents read enabled, and "W" represents write enabled. 2: CNTR0 input is valid only when CNTR0 input is selected for the timer 1 count source. | LCD control register L1 | | at reset : 00002 | | at power dow | vn : state retained | R/W
TAL1/TL1A | | |-------------------------|--|------------------|-----|----------------|---------------------|------------------|---| | L13 | Internal dividing resistor for LCD power | (|) | 2r X 3, 2r X 2 | • | | | | L13 | supply selection bit (Note 2) | 1 | | r X 3, r X 2 | | | | | L12 | 100 | (|) | Off | | | | | L12 | LCD control bit | | | On | | | | | | | L11 | L10 | Duty | | Bias | ; | | L11 | | 0 | 0 | | Not av | ailable | | | | | 0 | 1 | 1/2 | | 1/2 | | | L10 | LCD duty and bias selection bits | 1 | 0 | 1/3 | | 1/3 | | | | | 1 | 1 | 1/4 | | 1/3 | | | LCD control register L2 | | at reset : 00002 | | at power down : state retained | W
TL2A | |-------------------------|--|------------------------------------|-----------------------|--------------------------------|-----------| | L23 | L23 VLC3/SEG ₀ pin function switch bit (Note 3) | | SEG0 | | | | LZ3 | VLC3/3LG0 pin function switch bit (Note 3) | 1 | VLC3 | | | | L22 | Vi co/SEC4 pin function quitab bit (Note 4) | 0 | SEG1 | | | | LZ2 | VLC2/SEG1 pin function switch bit (Note 4) | 1 | VLC2 | | | | 1.04 | Vi or/SECo pin function quitab bit (Note 4) | 0 | SEG2 | | | | L21 | VLC1/SEG2 pin function switch bit (Note 4) | 1 | VLC1 | | | | 1.20 | Internal dividing resistor for LCD power | 0 Internal dividing resistor valid | | | | | L20 | supply control bit | 1 | Internal dividing res | sistor invalid | | | LCD control register L3 | | at | reset : 00002 | at power down : state retained | W
TL3A | |-------------------------|-----------------------------------|----|---------------|--------------------------------|-----------| | L33 | SEG24/P33-SEG27/P30 pin function | 0 | SEG24-SEG27 | | | | Los | switch bit | 1 | P33-P30 | | | | L32 | SEG28/P23, SEG29/P22 pin function | 0 | SEG28, SEG29 | | | | L32 | switch bit | 1 | P23, P22 | | | | L31 | SEG30/P21 pin function | 0 | SEG30 | | | | L31 | switch bit | 1 | P21 | | | | L30 | SEG31/P20 pin function | 0 | SEG31 | | | | L30 | switch bit | 1 | P20 | | | Notes 1: "R" represents read enabled, and "W" represents write enabled. ^{2: &}quot;r (resistor) multiplied by 3" is used at 1/3 bias, and "r multiplied by 2" is used at 1/2 bias. ^{3:} VLC3 is connected to VDD internally when SEG0 pin is selected. 4: Use internal dividing resistor when SEG1 and SEG2 pins are selected. | Pull-up control register PU0 | | at reset : 00002 | | at power down : state retained | R/W
TAPU0/
TPU0A | |------------------------------|-----------------------------|--|-----------------------|--------------------------------|------------------------| | DLIOs | Port P03 pull-up transistor | 0 | Pull-up transistor O | FF | | | PU03 | control bit | 1 | Pull-up transistor O | N | | | DLIOs | Port P02 pull-up transistor | 0 Pull-up transistor OFI 1 Pull-up transistor ON | | FF | | | PU02 | control bit | | | N | | | DI IO | Port P01 pull-up transistor | 0 | Pull-up transistor O | FF | | | PU01 | control bit | 1 | Pull-up transistor ON | | | | DUIOs | Port P00 pull-up transistor | 0 | Pull-up transistor O | FF | | | PU00 | control bit | 1 | Pull-up transistor O | N | | | Pull-up control register PU1 | | at reset : 00002 | | at power down : state retained TA | R/W
APU1/
PU1A | |------------------------------|-----------------------------|--------------------------|----------------------|-----------------------------------|----------------------| | DUIA | Port P13 pull-up transistor | 0 | Pull-up transistor O | FF | | | PU13 | control bit | 1 | Pull-up transistor O | N | | | DUIA | Port P12 pull-up transistor | 0 Pull-up transistor OFF | | FF | | | PU12 | control bit | 1 Pull-up transistor ON | | N | | | DUA | Port P11 pull-up transistor | 0 | Pull-up transistor O | FF | | | PU11 | control bit | 1 | Pull-up transistor O | N | | | DUIA | Port P10 pull-up transistor | 0 | Pull-up transistor O | FF | | | PU10 | control bit | 1 | Pull-up transistor O | N | | | Port output structure control register FR0 | | at reset : 00002 | | at power down : state retained | W
TFR0A | |--|---|------------------|-----------------------------|--------------------------------|------------| | ED0s | Ports P12, P13 output structure selection | 0 | N-channel open-drain output | | | | FR03 | bit | 1 | CMOS output | | | | FR02 | Ports P10, P11 output structure selection | 0 | N-channel open-drain output | | | | | bit | 1 | CMOS output | | | | ED0. | Ports P02, P03 output structure selection | 0 | N-channel open-drain output | | | | FR01 | bit | 1 | CMOS output | | | | FR00 | Ports P00, P01 output structure selection | 0 | N-channel open-drain output | | | | | bit | 1 | CMOS output | | | | Port output structure control register FR1 | | at reset : 00002 | | at power down : state retained | W
TFR1A | |--|--|-----------------------------|-----------------------------|--------------------------------|------------| | ED4: D ID I I I I I I I | 0 | N-channel open-drain output | | | | | FR13 | Port D3 output structure selection bit | 1 | CMOS output | | | | ED4e | Port D2 output structure selection bit | 0 | N-channel open-drain output | | | | FR12 | | 1 | CMOS output | | | | ED4. | Port D1 output structure selection bit | 0 | N-channel open-drain output | | | | FR11 | | 1 | CMOS output | | | | ED4° | Port Do output structure selection bit | 0 | N-channel open-dra | ain output | | | FR10 | | 1 | CMOS output | | | | Port output structure control register FR2 | | at reset : 00002 | | at power down : state retained | W
TFR2A | |--|---|------------------|-----------------------------|--------------------------------|------------| | EDO D (ON)TRO | Dort D7/CNTD0 output of ructure coloction bit | 0 | N-channel open-drain output | | | | FR23 | Port D7/CNTR0 output structure selection bit | 1 | CMOS output | | | | ED00 | Port D6 output structure selection bit | 0 | N-channel open-drain output | | | | FR22 | | 1 | CMOS output | | | | | Down Do output atmost use calcution hit | 0 | N-channel open-drain output | | | | FR21 | Port D5 output structure selection bit | 1 | CMOS output | | | | FR20 | Port D4 output structure selection bit | 0 | N-channel open-drain output | | | | FRZ0 | | 1 | CMOS output | | | Note: "R" represents read enabled, and "W" represents write enabled. | Key-on wakeup control register K0 | | at reset : 00002 | | at power down : state retained | R/W
TAK0/
TK0A | |--|------------------------------------|-----------------------|------------------------|--------------------------------|----------------------| | K03 | Port P03 key-on wakeup | 0 Key-on wakeup not i | | used | | | K03 | control bit | 1 | Key-on wakeup used | | | | I/On | Port P02 key-on wakeup | 0 | Key-on wakeup not used | | | | K02 | control bit | 1 | Key-on wakeup used | | | | Port P01 key-on wakeup 0 Key-on wakeup not | | used | | | | | K01 | control bit | 1 | Key-on wakeup used | | | | K0° | Port P0 ₀ key-on wakeup | 0 | Key-on wakeup not used | | | | K00 | control bit | 1 | Key-on wakeup used | | | | Key-on wakeup control register K1 | | at reset : 00002 | | at power down : state retained | R/W
TAK1/
TK1A | |-----------------------------------|--|------------------|------------------------|--------------------------------|----------------------| | V40 | K13 Port P13 key-on wakeup control bit | 0 | Key-on wakeup not used | | | | K13 | | 1 | Key-on wakeup used | | | | 1/40 | Port P12 key-on wakeup control bit | 0 | Key-on wakeup not used | | | | K12 | | 1 | Key-on wakeup used | | | | 1/4 / | Dest Die Lee ee ee lee
ee ee teel hit | 0 | Key-on wakeup not used | | | | K11 | Port P11 key-on wakeup control bit | 1 | Key-on wakeup used | | | | 1/4 - | Port P10 key-on wakeup control bit | 0 | Key-on wakeup not used | | | | K10 | | 1 | Key-on wakeup used | | | | Key-on wakeup control register K2 | | at reset : 00002 | | at power down : state retained | R/W
TAK2/
TK2A | |-----------------------------------|---|------------------|-----------------------|--------------------------------|----------------------| | K23 | INT1 pin return condition selection bit | 0 | Returned by level | | | | N23 | | 1 | Returned by edge | | | | K22 | INT1 pin key-on wakeup control bit | 0 | Key-on wakeup invalid | | | | NZZ | | 1 | Key-on wakeup valid | | | | I/O. | INT0 pin return condition selection bit | 0 | Returned by level | | | | K21 | | 1 | Returned by edge | | | | K20 | INT0 pin key-on wakeup control bit | 0 | Key-on wakeup invalid | | | | N20 | | 1 | Key-on wakeup valid | | | Note: "R" represents read enabled, and "W" represents write enabled. #### **INSTRUCTIONS** The 4554 Group has the 136 instructions. Each instruction is described as follows; - (1) Index list of instruction function - (2) Machine instructions (index by alphabet) - (3) Machine instructions (index by function) - (4) Instruction code table #### **SYMBOL** The symbols shown below are used in the following list of instruction function and the machine instructions. | Symbol | Contents | Symbol | Contents | |--------|--|-------------------|--| | Α | Register A (4 bits) | PS | Prescaler | | В | Register B (4 bits) | T1 | Timer 1 | | DR | Register DR (3 bits) | T2 | Timer 2 | | E | Register E (8 bits) | Т3 | Timer 3 | | V1 | Interrupt control register V1 (4 bits) | T4 | Timer 4 | | V2 | Interrupt control register V2 (4 bits) | T5 | Timer 5 | | 11 | Interrupt control register I1 (4 bits) | TLC | Timer LC | | 12 | Interrupt control register I2 (4 bits) | T1F | Timer 1 interrupt request flag | | MR | Clock control register MR (4 bits) | T2F | Timer 2 interrupt request flag | | PA | Timer control register PA (1 bit) | T3F | Timer 3 interrupt request flag | | W1 | Timer control register W1 (4 bits) | T4F | Timer 4 interrupt request flag | | W2 | Timer control register W2 (4 bits) | T5F | Timer 5 interrupt request flag | | W3 | Timer control register W2 (4 bits) | WDF1 | Watchdog timer flag | | W4 | Timer control register W3 (4 bits) | WEF | Watchdog timer hag Watchdog timer enable flag | | W5 | 1 | INTE | | | W6 | Timer control register W5 (4 bits) | EXF0 | Interrupt enable flag | | | Timer control register W6 (4 bits) | | External 0 interrupt request flag | | L1 | LCD control register L1 (4 bits) | EXF1 | External 1 interrupt request flag | | L2 | LCD control register L2 (4 bits) | P | Power down flag | | L3 | LCD control register L3 (4 bits) | | Dest D (40 hite) | | PU0 | Pull-up control register PU0 (4 bits) | D | Port D (10 bits) | | PU1 | Pull-up control register PU1 (4 bits) | P0 | Port P0 (4 bits) | | FR0 | Port output format control register FR0 (4 bits) | P1 | Port P1 (4 bits) | | FR1 | Port output format control register FR1 (4 bits) | P2 | Port P2 (4 bits) | | FR2 | Port output format control register FR2 (4 bits) | P3 | Port P3 (4 bits) | | FR3 | Port output format control register FR3 (4 bits) | С | Port C (1 bit) | | K0 | Key-on wakeup control register K0 (4 bits) | | | | K1 | Key-on wakeup control register K1 (4 bits) | x | Hexadecimal variable | | K2 | Key-on wakeup control register K2 (4 bits) | У | Hexadecimal variable | | X | Register X (4 bits) | z | Hexadecimal variable | | Υ | Register Y (4 bits) | р | Hexadecimal variable | | Z | Register Z (2 bits) | n | Hexadecimal constant | | DP | Data pointer (10 bits) | li | Hexadecimal constant | | | (It consists of registers X, Y, and Z) | j | Hexadecimal constant | | PC | Program counter (14 bits) | A3A2A1A0 | Binary notation of hexadecimal variable A | | РСн | High-order 7 bits of program counter | | (same for others) | | PCL | Low-order 7 bits of program counter | | | | SK | Stack register (14 bits X 8) | \leftarrow | Direction of data movement | | SP | Stack pointer (3 bits) | \leftrightarrow | Data exchange between a register and memory | | CY | Carry flag | ? | Decision of state shown before "?" | | RPS | Prescaler reload register (8 bits) | () | Contents of registers and memories | | R1 | Timer 1 reload register (8 bits) | 1— | Negate, Flag unchanged after executing instruction | | R2 | Timer 2 reload register (8 bits) | M(DP) | RAM address pointed by the data pointer | | R3 | Timer 3 reload register (8 bits) | a ′ | Label indicating address a6 a5 a4 a3 a2 a1 a0 | | R4L | Timer 4 reload register (8 bits) | p, a | Label indicating address a6 a5 a4 a3 a2 a1 a0 | | R4H | Timer 4 reload register (8 bits) | [' | in page p5 p4 p3 p2 p1 p0 | | RLC | Timer LC reload register (4 bits) | C
+
x | Hex. C + Hex. number x | | | | | | Note: Some instructions of the 4554 Group has the skip function to unexecute the next described instruction. The 4554 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped. #### INDEX LIST OF INSTRUCTION FUNCTION | Group-
ing | Mnemonic | Function | Page | Group-
ing | Mnemonic | Function | Page | |-------------------------------|----------|--|----------|--------------------------|----------|---|----------| | | TAB | (A) ← (B) | 95, 112 | er | XAMI j | $(A) \leftarrow \rightarrow (M(DP))$
$(X) \leftarrow (X)EXOR(j)$ | 111, 112 | | | ТВА | (B) ← (A) | 103, 112 | RAM to register transfer | | $j = 0 \text{ to } 15$ $(Y) \leftarrow (Y) + 1$ | | | | TAY | $(A) \leftarrow (Y)$ | 102, 112 | registe | TMA j | $(M(DP)) \leftarrow (A)$ | 106, 112 | | | TYA | $(Y) \leftarrow (A)$ | 110, 112 | AM to | , | $(X) \leftarrow (X)EXOR(j)$
j = 0 to 15 | , | | | TEAB | (E7–E4) ← (B) | 103, 112 | <u>~</u> | | | | | ınsfer | | (E3−E0) ← (A) | | | LA n | (A) ← n
n = 0 to 15 | 84, 114 | | er tra | TABE | (B) ← (E7–E4) | 96, 112 | | | | | | regist | | (A) ← (E3–E0) | | | TABP p | $(SP) \leftarrow (SP) + 1$
$(SK(SP)) \leftarrow (PC)$ | 96, 114 | | er to | TDA | $(DR2-DR0) \leftarrow (A2-A0)$ | 103, 112 | | | (PCH) ← p | | | Register to register transfer | TAD | $(A2-A0) \leftarrow (DR2-DR0)$ $(A3) \leftarrow 0$ | 97, 112 | | | $(PCL) \leftarrow (DR2-DR0, A3-A0)$
$(B) \leftarrow (ROM(PC))7-4$
$(A) \leftarrow (ROM(PC))3-0$ | | | | | | | | | $(PC) \leftarrow (SK(SP))$ | | | | TAZ | $(A_1, A_0) \leftarrow (Z_1, Z_0)$
$(A_3, A_2) \leftarrow 0$ | 102, 112 | | | (SP) ← (SP) − 1 | | | | TAX | $(A) \leftarrow (X)$ | 102, 112 | | AM | $(A) \leftarrow (A) + (M(DP))$ | 78, 114 | | | TASP | $(A2-A0) \leftarrow (SP2-SP0)$
$(A3) \leftarrow 0$ | 100, 112 | | AMC | $(A) \leftarrow (A) + (M(DP)) + (CY)$
$(CY) \leftarrow Carry$ | 78, 114 | | | 1.20/ | (1) | 84, 112 | ation | A n | (A) ← (A) + n | 78, 114 | | 40 | LXY x, y | $(X) \leftarrow x \ x = 0 \text{ to } 15$
$(Y) \leftarrow y \ y = 0 \text{ to } 15$ | 04, 112 | oper | | n = 0 to 15 | | | RAM addresses | LZ z | $(Z) \leftarrow z z = 0 \text{ to } 3$ | 84, 112 | Arithmetic operation | AND | $(A) \leftarrow (A) \text{ AND } (M(DP))$ | 78, 114 | | M add | INY | $(Y) \leftarrow (Y) + 1$ | 83, 112 | Arit | OR | $(A) \leftarrow (A) OR (M(DP))$ | 85, 114 | | RAI | | | 81, 112 | | sc | (CY) ← 1 | 89, 114 | | | DEY | (Y) ← (Y) − 1 | | | RC | (CY) ← 0 | 87, 114 | | | TAM j | $(A) \leftarrow (M(DP))$ $(X) \leftarrow (X)EXOR(j)$ | 99, 112 | | SZC | (CY) = 0 ? | 93, 114 | | fer | | j = 0 to 15 | | | | | , | | trans | XAM j | $(A) \leftarrow \rightarrow (M(DP))$ | 111, 112 | | CMA | $(A) \leftarrow (\overline{A})$ | 80, 114 | | RAM to register transfer | | $(X) \leftarrow (X)EXOR(j)$
j = 0 to 15 | | | RAR | → <u>CY</u> → <u>A3A2A1A0</u> | 86, 114 | | M to r | XAMD j | $(A) \leftarrow \rightarrow (M(DP))$ | 111, 112 | | | | | | RA | | $(X) \leftarrow (X)EXOR(j)$
j = 0 to 15
$(Y) \leftarrow (Y) - 1$ | | | | | | Note: p is 0 to 63 for M34554M8, p is 0 to 95 for M34554MC and p is 0 to 127 for M34554ED. #### **INDEX LIST OF INSTRUCTION FUNCTION (continued)** | Group-
ing | Mnemonic | Function | Page | Group-
ing | Mnemonic | Function | Page | |------------------------|---------------|---|---------|---------------------|----------|---------------------------------------|----------| | | SB j | (Mj(DP)) ← 1
j = 0 to 3 | 88, 114 | | DI | $(INTE) \leftarrow 0$ | 81, 118 | | uo | | j = 0 to 3 | | | EI | (INTE) ← 1 | 82, 118 | | Bit operation | RB j | $(Mj(DP)) \leftarrow 0$
j = 0 to 3 | 86, 114 | | SNZ0 | V10 = 0: (EXF0) = 1 ? | 90, 118 | | Bit o | 070 | | | | | After skipping, (EXF0) ← 0 | , | | | SZB j | (Mj(DP)) = 0 ?
j = 0 to 3 | 93, 114 | | SNZ1 | V11 = 0: (EXF1) = 1 ? | 90, 118 | | | SEAM | (A) = (M(DP)) ? | 90, 114 | | | After skipping, (EXF1) \leftarrow 0 | | | omparisor
operation | | | | | SNZI0 | I12 = 1 : (INT0) = "H" ? | 90, 118 | | Comparison operation | SEA n | (A) = n ?
n = 0 to 15 | 89, 114 | | | I12 = 0 : (INT0) = "L" ? | | | | D.o. | (DCI) (00 00 | 70.446 | ation | SNZI1 | 122 = 1 : (INT1) = "H" ? | 91, 118 | | uo | Ва | (PCL) ← a6–a0 | 79, 116 | oper | | I22 = 0 : (INT1) = "L" ? | | | perati | BL p, a | (PCH) ← p
(PCL) ← a6-a0 | 79, 116 | Interrupt operation | TAV1 | $(A) \leftarrow (V1)$ | 100, 118 | | Branch operation | | , | | lnt | TV1A | (V1) ← (A) | 108, 118 | | Bra | BLA p | $(PCH)
\leftarrow p$
$(PCL) \leftarrow (DR2-DR0, A3-A0)$ | 79, 116 | | TAV2 | (A) ← (V2) | 100, 118 | | | вм а | (SP) ← (SP) + 1 | 79, 116 | | TV2A | (V2) ← (A) | 109, 118 | | | DIVI a | $(SK(SP)) \leftarrow (PC)$ | 73, 110 | | | | | | | | (PCH) ← 2
(PCL) ← a6–a0 | | | TAI1 | (A) ← (I1) | 97, 118 | | ation | BML p, a | (SP) ← (SP) + 1 | 80, 116 | | TI1A | $(I1) \leftarrow (A)$ | 104, 118 | | opera | Divic μ, a | $(SK(SP)) \leftarrow (PC)$ | 00, 110 | | TAI2 | (A) ← (I2) | 97, 118 | | utine | | (PCH) ← p
(PCL) ← a6–a0 | | | TI2A | (I2) ← (A) | 104, 118 | | Subroutine operation | DAM A - | | 00.440 | | TDAA | | 107.410 | | 0, | BMLA p | $(SP) \leftarrow (SP) + 1$
$(SK(SP)) \leftarrow (PC)$ | 80, 116 | | TPAA | $(PA0) \leftarrow (A0)$ | 107, 118 | | | | $(PCH) \leftarrow p$
$(PCL) \leftarrow (DR2-DR0, A3-A0)$ | | | TAW1 | $(A) \leftarrow (W1)$ | 100, 118 | | | | | | | TW1A | (W1) ← (A) | 109, 118 | | | RTI | $(PC) \leftarrow (SK(SP))$
$(SP) \leftarrow (SP) - 1$ | 88, 116 | ے | TAW2 | (A) ← (W2) | 101, 118 | | | RT | $(PC) \leftarrow (SK(SP))$ | 87, 116 | eratio | TW2A | (W2) ← (A) | 109, 118 | | ا د | | $(SP) \leftarrow (SR(SP))$ | | Timer operation | | | | | eratio | RTS | $(PC) \leftarrow (SK(SP))$ | 88, 116 | Tim | TAW3 | (A) ← (W3) | 101, 118 | | Return operation | | (SP) ← (SP) – 1 | | | TW3A | (W3) ← (A) | 109, 118 | | Retui | | | | | | | | | | | | | | | | | | | 0 to 63 for M | | | | | | | Note: p is 0 to 63 for M34554M8, p is 0 to 95 for M34554MC and p is 0 to 127 for M34554ED. **INDEX LIST OF INSTRUCTION FUNCTION (continued)** | Group-
ing | Mnemonic | Function | Page | Group-
ing | Mnemonic | Function | Page | |-----------------|----------|--|----------|------------------------|----------|--|----------| | | TAW4 | (A) ← (W4) | 101, 118 | | T4HAB | (R4H7–R4H4) ← (B)
(R4H3–R4H0) ← (A) | 94, 120 | | | TW4A | (W4) ← (A) | 110, 118 | | | (14113 14110) (- (A) | | | | | | | | TR1AB | (R17–R14) ← (B) | 108, 120 | | | TAW5 | (A) ← (W5) | 101, 120 | | | (R13–R10) ← (A) | | | | TW5A | (W5) ← (A) | 110, 120 | | TR3AB | (R37–R34) ← (B) | 108, 120 | | | | | | | | (R33–R30) ← (A) | | | | TAW6 | (A) ← (W6) | 102, 120 | | | | | | | TW6A | (M6) ((A) | 110, 120 | | T4R4L | $(T47-T44) \leftarrow (R4L7-R4L4)$ | 95, 120 | | | IVVOA | (W6) ← (A) | 110, 120 | | | $(T43-T40) \leftarrow (R4L3-R4L0)$ | | | | TABPS | (B) ← (TPS7–TPS4) | 97, 120 | io | TLCA | $(LC) \leftarrow (A)$ | 106, 120 | | | | $(A) \leftarrow (TPS3-TPS0)$ | | Timer operation | | | | | | | | | g 7 | SNZT1 | V12 = 0: (T1F) = 1 ? | 91, 122 | | | TPSAB | (RPS7–RPS4) ← (B) | 107, 120 | ı. | | After skipping, $(T1F) \leftarrow 0$ | | | | | $(TPS7-TPS4) \leftarrow (B)$ | | - | 011770 |)// 0 /TOF) 1.0 | 04 400 | | | | $(RPS3-RPS0) \leftarrow (A)$
$(TPS3-TPS0) \leftarrow (A)$ | | | SNZT2 | V13 = 0: (T2F) = 1 ?
After skipping, (T2F) \leftarrow 0 | 91, 122 | | | | (11 33-11 30) ((A) | | | | Alter skipping, (121) ← 0 | | | | TAB1 | (B) ← (T17–T14) | 95, 120 | | SNZT3 | V20 = 0: (T3F) = 1 ? | 92, 122 | | | | (A) ← (T13–T10) | | | | After skipping, $(T3F) \leftarrow 0$ | | | _ | | | | | | | | | ation | T1AB | $(R17-R14) \leftarrow (B)$ | 93, 120 | | SNZT4 | V23 = 0: (T4F) = 1 ? | 92, 122 | | oera | | $(T17-T14) \leftarrow (B)$ $(R13-R10) \leftarrow (A)$ | | | | After skipping, $(T4F) \leftarrow 0$ | | | Timer operation | | $(T13-T10) \leftarrow (A)$ | | | SNZT5 | V21 = 0: (T5F) = 1 ? | 92, 122 | | Ĕ | | | | | CITETO | After skipping, $(T5F) \leftarrow 0$ | , | | | TAB2 | (B) ← (T27–T24) | 95, 120 | | | | | | | | (A) ← (T23–T20) | | | IAP0 | (A) ← (P0) | 82, 122 | | | T2AB | R27−R24) ← (B) | 94, 120 | | OP0A | (P0) ← (A) | 85, 122 | | | 12/15 | $(T27-T24) \leftarrow (B)$ | 04, 120 | | OI OA | (1 0) (- (A) | 00, 122 | | | | (R23–R20) ← (A) | | | IAP1 | (A) ← (P1) | 83, 122 | | | | (T23−T20) ← (A) | | | | | | | | TAB3 | (B) ← (T37–T34) | 96, 120 | | OP1A | (P1) ← (A) | 85, 122 | | | IABS | $(A) \leftarrow (T33-T34)$ | 90, 120 | tion | IAP2 | (A) ← (P2) | 83, 122 | | | | | | Input/Output operation | | | | | | T3AB | (R37–R34) ← (B) | 94, 120 | t o | IAP3 | (A) ← (P3) | 83, 122 | | | | (T37–T34) ← (B) | | utb | | | | | | | $(R33-R30) \leftarrow (A)$ $(T33-T30) \leftarrow (A)$ | | l Ojr | | | | | | | (133-130) ← (A) | | ldul | | | | | | TAB4 | (B) ← (T47–T44) | 96, 120 | | | | | | | | (A) ← (T43–T40) | | | | | | | | TAAD | (DAL = DAL () (D) | 04.400 | | | | | | | T4AB | $(R4L7-R4L4) \leftarrow (B)$ | 94, 120 | | | | | | | | $ (T47-T44) \leftarrow (B) $ $ (R4L3-R4L0) \leftarrow (A) $ | | | | | | | | | $(K4L3-K4L0) \leftarrow (A)$
$(T43-T40) \leftarrow (A)$ | | | | | | | | | (1-3 1-0) (A) | | | | | | INDEX LIST OF INSTRUCTION FUNCTION (continued) | | ION (cor | | | |------------------------|----------|---------------------------------------|----------| | Group-
ing | Mnemonic | Function | Page | | | CLD | (D) ← 1 | 80, 122 | | | RD | $(D(Y)) \leftarrow 0$
(Y) = 0 to 9 | 87, 122 | | | SD | $(D(Y)) \leftarrow 1$
(Y) = 0 to 9 | 89, 122 | | | SZD | (D(Y)) = 0 ?
(Y) = 0 to 7 | 93, 122 | | | RCP | (C) ← 0 | 87, 122 | | | SCP | (C) ← 1 | 89, 122 | | | TAPU0 | (A) ← (PU0) | 99, 122 | | ration | TPU0A | (PU0) ← (A) | 107, 122 | | Input/Output operation | TAPU1 | (A) ← (PU1) | 99, 122 | | ıt/Outp | TPU1A | (PU1) ← (A) | 108, 122 | | lnpu | TAK0 | (A) ← (K0) | 98, 124 | | | TK0A | (K0) ← (A) | 105, 124 | | | TAK1 | (A) ← (K1) | 98, 124 | | | TK1A | (K1) ← (A) | 105, 124 | | | TAK2 | (A) ← (K2) | 98, 124 | | | TK2A | (K2) ← (A) | 105, 124 | | | TFR0A | $(FR0) \leftarrow (A)$ | 103, 124 | | | TFR1A | (FR1) ← (A) | 104, 124 | | | TFR2A | (FR2) ← (A) | 104, 124 | | | CMCK | Ceramic resonator selected | 81, 124 | | uo | CRCK | RC oscillator selected | 81, 124 | | Clock operation | TAMR | $(A) \leftarrow (MR)$ | 99, 124 | | Clock (| TMRA | $(MR) \leftarrow (A)$ | 107, 124 | | | | | | | ued) | | | | | | | | |-----------------|----------|--|----------|--|--|--|--| | Group-
ing | Mnemonic | Function | Page | | | | | | | TAL1 | (A) ← (L1) | 116, 124 | | | | | | LCD operation | TL1A | (L1) ← (A) | 124, 124 | | | | | | SD ope | TL2A | (L2) ← (A) | 124, 124 | | | | | |]] | TL3A | (L3) ← (A) | 113, 124 | | | | | | | NOP | (PC) ← (PC) + 1 | 128, 124 | | | | | | | POF | Transition to clock operating mode | 108, 124 | | | | | | | POF2 | Transition to RAM back-up mode | 107, 124 | | | | | | | EPOF | POF, POF2 instructions valid | 115, 124 | | | | | | ion | SNZP | (P) = 1 ? | 123, 124 | | | | | | Other operation | DWDT | Stop of watchdog timer function enabled | 112, 146 | | | | | | Oth | WRST | (WDF1) = 1?
After skipping, $(WDF1) \leftarrow 0$ | 116, 146 | | | | | | | RBK* | When TABP p instruction is executed, $P_6 \leftarrow 0$ | 114, 146 | | | | | | | SBK* | When TABP p instruction is executed, $P6 \leftarrow 1$ | 92, 146 | | | | | | | SVDE | At power down mode, voltage drop detection circuit valid | 106, 146 | | | | | Note: *(RBK, SBK) cannot be used in the M34554M8. #### MACHINE INSTRUCTIONS (INDEX BY ALPHABET) | An (Add n | and accumulator) | | | | | |---------------------------------
--|---|---|---|--| | Instruction | D9 D0 | Number of words | Number of cycles | Flag CY | Skip condition | | | 0 0 0 1 1 1 0 n n n n 2 0 6 n 16 | 1 | 1 | _ | Overflow = 0 | | AM (Add a Instruction code | $\begin{array}{c} \text{(A)} \leftarrow \text{(A)} + \text{n} \\ \text{n = 0 to 15} \\ \\ \hline \\ \text{occumulator and Memory)} \\ \hline \\ \text{D9} \\ \hline \\ \text{0} \\ \hline \text{0} \\ $ | Number of words 1 Grouping: Description | register A, The contents Skips the register A Executes to overflow as Number of cycles 1 Arithmetic Adds the contents Stores the | value n in and stores s of carry fla next instru s the resulthe next ins the resulthe next ins the resulthe next ins contents of the next instruction. | the immediate field to a a result in register A. g CY remains unchanged ction when there is not tof operation. Skip condition GM(DP) to register A egister A. The contents ains unchanged. | | AMC (Add
Instruction
code | accumulator, Memory and Carry) D9 D0 0 0 0 0 0 0 1 0 1 1 2 0 0 B 16 | Number of words | Number of cycles | Flag CY | Skip condition | | Operation: | $(A) \leftarrow (A) + (M(DP)) + (CY)$ | Grouping: | Arithmetic | | _ | | | (CY) ← Carry | | : Adds the d | contents of
ster A. Sto | f M(DP) and carry flag
res the result in regis-
Y. | | | al AND between accumulator and memory) | | | | | | Instruction code | D9 D0 | Number of words | Number of cycles | Flag CY | Skip condition | | | 0 0 0 0 0 1 1 0 0 0 2 0 1 6 16 | 1 | 1 | _ | - | | Operation: | $(A) \leftarrow (A) \text{ AND } (M(DP))$ | Grouping: Description | tents of r | AND opera | ation between the con-
and the contents o
e result in register A. | | B a (Brancl | n to address a) | | | | | |--|---|---|--|---|---| | Instruction code | D9 D0 0 1 1 a6 a5 a4 a3 a2 a1 a0 a 1 8 a 4 | Number of words | Number of cycles | Flag CY | Skip condition | | | 0 1 1 a6 a5 a4 a3 a2 a1 a0 2 1 +a a 16 | 1 | 1 | _ | - | | Operation: | (PCL) ← a6 to a0 | Grouping: | Branch ope | ration | | | oporation. | (1 02) \ ao to ao | - | | | : Branches to address | | | | 2 ccc i piion | a in the ide | | | | | | Note: | | | ddress within the page | | | | | including th | | · - | | | | | | | | | RI n a (Br | anch Long to address a in page p) | | | | | | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | 0 0 1 1 1 1 p4 p3 p2 p1 p0 2 0 E p 16 | words | cycles | i lag C i | Skip condition | | | 1 pc pc qc qc qc qc qc qc 2 p q | 2 | 2 | _ | _ | | | 1 po p5 a6 a5 a4 a3 a2 a1 a0 ₂ | Grouping: | Branch ope | eration | | | Operation: | $(PCH) \leftarrow p$ | Description | : Branch out | of a page | : Branches to address | | | (PCL) ← a6 to a0 | | a in page p | | | | | | Note: | | | 54M8, and p is 0 to 95 | | | | | | | d p is 0 to 127 for | | | | | M34554ED | ٠. | BLA p (Bra | anch Long to address (D) + (A) in page p) | | | | | | BLA p (Bra | anch Long to address (D) + (A) in page p) Do Do | Number of | Number of | Flag CY | Skip condition | | | D9 D0 | words | cycles | Flag CY | Skip condition | | Instruction | D9 D0 0 0 0 0 1 0 0 0 0 2 0 1 0 1 1 0 1
1 0 1 1 0 1 1 0 1 0 1 1 0 | | | Flag CY | Skip condition | | Instruction | D9 D0 0 0 0 0 1 0 0 0 0 2 0 1 0 16 | words 2 | cycles
2 | _ | · | | Instruction code | D9 | words 2 Grouping: | cycles 2 Branch ope | -
eration | -
- | | Instruction code | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | words 2 Grouping: | cycles 2 Branch ope Branch out | eration
of a page | : Branches to address | | Instruction code | D9 | words 2 Grouping: | 2 Branch ope Branch out (DR2 DR1 | eration
of a page
DRo A3 A2 | : Branches to address | | Instruction code | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | words 2 Grouping: Description | Branch ope Branch out (DR2 DR1 registers D | eration of a page DRo A3 A2 and A in p | : Branches to address
2 A1 A0)2 specified by
age p. | | Instruction code | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | words 2 Grouping: | Branch ope Branch out (DR2 DR1 registers D p is 0 to 63 | eration of a page DR0 A3 A2 and A in p | Eranches to address A1 A0)2 specified by age p. 54M8, and p is 0 to 95 | | Instruction code | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | words 2 Grouping: Description | Branch ope Branch out (DR2 DR1 registers D p is 0 to 63 | eration of a page DRo A3 A2 and A in p for M3455 | : Branches to address 2 A1 A0)2 specified by age p. 54M8, and p is 0 to 95 | | Instruction code | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | words 2 Grouping: Description | Branch ope Branch out (DR2 DR1 registers D p is 0 to 63 for M3455 | eration of a page DRo A3 A2 and A in p for M3455 | Eranches to address 2 A1 A0)2 specified by age p. 54M8, and p is 0 to 95 | | Instruction code Operation: | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | words 2 Grouping: Description | Branch ope Branch out (DR2 DR1 registers D p is 0 to 63 for M3455 | eration of a page DRo A3 A2 and A in p for M3455 | : Branches to address | | Operation: | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | words 2 Grouping: Description Note: | Branch ope
Branch out
(DR2 DR1
registers D
p is 0 to 63
for M3455
M34554ED | eration
of a page
DRo A3 A2
and A in p
for M3455
54MC, an | : Branches to address
2 A1 A0)2 specified by
age p.
54M8, and p is 0 to 95
d p is 0 to 127 for | | Operation: BM a (Brail Instruction | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | words 2 Grouping: Description | Branch ope Branch out (DR2 DR1 registers D p is 0 to 63 for M3455 | eration of a page DRo A3 A2 and A in p for M3455 | Eranches to address A1 A0)2 specified by age p. 54M8, and p is 0 to 95 | | Operation: | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | words 2 Grouping: Description Note: | Branch ope Branch out (DR2 DR1 registers D p is 0 to 63 for M3455 M34554ED Number of | eration
of a page
DRo A3 A2
and A in p
for M3455
54MC, an | : Branches to address
2 A1 A0)2 specified by
age p.
54M8, and p is 0 to 95
d p is 0 to 127 for | | Operation: BM a (Brail Instruction | D9 | words 2 Grouping: Description Note: Number of words | Branch ope Branch out (DR2 DR1 registers D p is 0 to 63 for M3455 M34554ED Number of cycles | eration of a page DR0 A3 A2 and A in p for M3458 64MC, an | : Branches to address 2 A1 A0)2 specified by age p. 54M8, and p is 0 to 95 d p is 0 to 127 for Skip condition | | Operation: BM a (Brail Instruction code | D9 | words 2 Grouping: Description Note: Number of words 1 Grouping: | cycles 2 Branch ope Branch out (DR2 DR1 registers D p is 0 to 63 for M3455 M34554ED Number of cycles 1 Subroutine | eration of a page DRo A3 A2 and A in p for M3456 64MC, an | : Branches to address 2 A1 A0)2 specified by age p. 54M8, and p is 0 to 95 d p is 0 to 127 for Skip condition | | Operation: BM a (Brail Instruction code | D9 D0 D0 D0 D0 D0 D1 D0 D0 D0 D1 D0 | words 2 Grouping: Description Note: Number of words 1 Grouping: | cycles 2 Branch ope Branch out (DR2 DR1 registers D p is 0 to 63 for M3455 M34554ED Number of cycles 1 Subroutine Call the s | eration of a page DRo A3 A2 and A in p for M3455 64MC, an Flag CY call opera | : Branches to address 2 A1 A0)2 specified by age p. 54M8, and p is 0 to 95 d p is 0 to 127 for Skip condition | | Operation: BM a (Brail Instruction code | D9 D0 D0 D0 D1 | words 2 Grouping: Description Note: Number of words 1 Grouping: | Branch ope Branch out (DR2 DR1 registers D p is 0 to 63 for M3455 M34554ED Number of cycles 1 Subroutine Call the s subroutine | eration of a page DRo A3 A2 and A in p for M3455 54MC, an Flag CY call opera ubroutine at address | : Branches to address 2 A1 A0)2 specified by age p. 54M8, and p is 0 to 95 d p is 0 to 127 for Skip condition — attion in page 2 : Calls the s a in page 2. | | Operation: BM a (Brail Instruction code | D9 D0 D0 $0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$ | words 2 Grouping: Description Note: Number of words 1 Grouping: Description | Branch ope Branch out (DR2 DR1 registers D p is 0 to 63 for M3455 M34554ED Number of cycles 1 Subroutine subroutine Subroutine other page | eration of a page DRo A3 A2 and A in p for M3455 54MC, an Flag CY call opera ubroutine at address e extendir e can also | : Branches to address 2 A1 A0)2 specified by age p. 54M8, and p is 0 to 95 d p is 0 to 127 for Skip condition Skip condition - attion in page 2 : Calls the sa in page 2. In g from page 2 to an be called with the BN | | Operation: BM a (Brail Instruction code | D9 D0 D0 $0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$ | words 2 Grouping: Description Note: Number of words 1 Grouping: Description | Branch ope Branch out (DR2 DR1 registers D p is 0 to 63 for M3455 M34554ED Number of cycles 1 Subroutine Subroutine Subroutine other page instruction | eration of a page DRo A3 A2 and A in p for M3455 54MC, an Flag CY call opera ubroutine at address e extendir e can also when it sta | : Branches to address 2 A1 A0)2 specified by age p. 54M8, and p is 0 to 95 d p is 0 to 127 for Skip condition Skip condition - ation in page 2 : Calls the s a in page 2. g from page 2 to an be called with the BM arts on page 2. | | Operation: BM a (Brail Instruction code | D9 D0 D0 $0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$ | words 2 Grouping: Description Note: Number of words 1 Grouping: Description | cycles 2 Branch ope : Branch out (DR2 DR1 registers D p is 0 to 63 for M3455 M34554ED Number of cycles 1 Subroutine :: Call the s subroutine Subroutine other page instruction Be careful | eration of a page DRo A3 A2 and A in p for M3455 64MC, an Flag CY call opera ubroutine at address e extendir e can also when it sta | : Branches to address 2 A1 A0)2 specified by age p. 54M8, and p is 0 to 95 d p is 0 to 127 for Skip condition Skip condition - attion in page 2 : Calls the s a in page 2. In g from page 2 to an be called with the BM | | | Propose and Mark Langto address a in page 1) | Continu | —————————————————————————————————————— | | | |------------------|---|-----------------|--|--------------|---| | | (Branch and Mark Long to address a in page p) | Northead | Ni. mala a n. af | Flar CV | Oldan and distant | | Instruction | D9 D0 C D C D | Number of words | Number of cycles | Flag CY | Skip condition | | code | 0 0 1 1 0 94 93 92 91 90 2 0 +9 9 16 | 2 | 2 | _ | _ | | | 1 p6 p5 a6 a5 a4 a3 a2 a1 a0 2 +p +a a 16 | Crauning | Cubrautina | a all an are | tion | | Operation | (CD) (CD) (1 | Grouping: | Subroutine | | Calls the subroutine a | | Operation: | $ (SP) \leftarrow (SP) + 1 $ $ (SK(SP)) \leftarrow (PC) $ | Description | address a | | Calls the subfoutifie at | | | $(SK(SF)) \leftarrow (FC)$
$(PCH) \leftarrow p$ | Note: | | | 54M8, and p is 0 to 95 | | | (PCL) ← a6–a0 | | | 54MC, ar | nd p is 0 to 127 for | | | | | | | the stack because the routine nesting is 8. | | BMLA p (E | Branch and Mark Long to address (D) + (A) in page | o) | | | | | Instruction |
D9 D0 | Number of words | Number of cycles | Flag CY | Skip condition | | code | 0 0 0 0 1 1 0 0 0 0 2 0 3 0 16 | 2 | 2 | _ | _ | | | 1 p6 p5 p4 0 0 p3 p2 p1 p0 2 2 pp p p 16 | 0 | Outrosetions | !! | e | | Operations | (CD) (CD) (1 | Grouping: | Subroutine | | เนอก
Calls the subroutine at | | Operation: | $(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ | Description | | | Ro A3 A2 A1 A0)2 speci- | | | $(PCH) \leftarrow p$ | | ` | | id A in page p. | | | $(PCL) \leftarrow (DR2-DR0, A3-A0)$ | Note: | p is 0 to 63 | for M34554 | 4M8, and p is 0 to 95 fo | | | | | M34554MC | and p is 0 | to 127 for M34554ED. | | | | | | | the stack because the | | | | | maximum l | evel of sub | routine nesting is 8. | | CLD (CLea | ar port D) | | | | | | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | 0 0 0 0 0 1 0 0 1 1 2 | words
1 | cycles
1 | _ | _ | | Operation: | (D) ← 1 | Ci | la a vit/Ovita | | _ | | Operation. | $(D) \leftarrow 1$ | Grouping: | Input/Outp | | n | | | | Description | i. Sets (1) to | port D. | CMA (Colv | Iplement of Accumulator) | | | | | | Instruction code | D9 D0 0 0 0 1 1 1 0 0 0 0 1 C 16 | Number of words | Number of cycles | Flag CY | Skip condition | | | 0 0 0 0 0 1 1 1 1 0 0 ₂ 0 1 C ₁₆ | 1 | 1 | _ | _ | | Operation: | $(A) \leftarrow \overline{(A)}$ | Grouping: | Arithmetic | operation | | | орогино | | | | | mplement for register | | | | | A's content | | - | | | | | | - | CMCK (Clo | | Ct: C | eraiviic | 080 | illatio | n Ci | ock) | | | | | | | 1 | | |--------------------|-----------|---------------|------------|---------|---------|----------------|----------------|-----|---|------------|----|---|------------------|-------------|--| | Instruction | D9 | | | | | | D ₀ | | _ | | _ | Number of words | Number of cycles | Flag CY | Skip condition | | code | 1 0 | 1 | 0 0 | 1 | 1 0 | 1 | 0 | 2 2 | ! | 9 <i>A</i> | 16 | 1 | 1 | _ | _ | | Operation: | Ceramio | - neci | illation c | rircuit | salacti | -d | | | | | | Grouping: | Other oper | ation | | | operation. | Ceramic | , 0301 | liation | iicuii | 361661 | J u | | | | | | | | | oscillation circuit and | | | | | | | | | | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | stops the ri | | | | CRCK (Clo | ck seled |
ct: R | c oscil | latio | n Clo | cK) | | | | | | | | | | | Instruction | D9 1 0 | 1 | 0 0 | 1 | 1 0 | | D0 | 2 | T | 9 E | 3 | Number of words | Number of cycles | Flag CY | Skip condition | | | . • | الـنــا | | 1. | 1. 1. | | 1. 1 | 2 | | <u> </u> | 16 | 1 | 1 | _ | _ | | Operation: | RC osci | llation | n circuit | sele | cted | | | | | | | Grouping: | Other oper | ation | | | - F | . 10 000. | | | | | | | | | | | | | RC oscill | ation circuit and stops | | DEY (DEcr | ement r | egis | ter Y) | 1 | 0 1 | 4 | D0 | | | 1 7 | 7 | Number of words | Number of cycles | Flag CY | Skip condition | | code | 0 0 | | 0 0 | ' | 0 1 | 1 | 1 | 2 0 | | 1 7 | 16 | 1 | 1 | - | (Y) = 15 | | Operation: | (Y) ← (` | <u>/) – 1</u> | ſ | | | | | | | | | Grouping: | RAM addre | esses | | | | | | | | | | | | | | | Description | Subtracts | 1 from the | contents of register Y | | | | | | | | | | | | | | | | | action, when the con- | | | | | | | | | | | | | | | | | 15, the next instruction | | | | | | | | | | | | | | | | | contents of register \text{\text{truction is executed.}} | | DI (Disable | Interru | pt) | | | | | | | | | | | | | | | Instruction code | D9 0 | 0 | 0 0 | 0 | 0 1 | 0 | D0 | 0 | T | 0 4 | 4 | Number of words | Number of cycles | Flag CY | Skip condition | | | | | | | | | | 2 | | | 16 | 1 | 1 | _ | - | | Operation: | (INTE) | ← 0 | | | | | | | _ | | | Grouping: | Interrupt c | ontrol oper | ation | | | | | | | | | | | | | | Description | | | t enable flag INTE, and | | | | | | | | | | | | | | | disables th | | | | | | | | | | | | | | | | Note: | | | by executing the DI in | | | | | | | | | | | | | | | struction a | fter execut | ing 1 machine cycle. | | DWDT (Dis | sable WatchDog Timer) | | | | | |------------------|--|--------------------------|------------------|-------------|--| | Instruction | | Number of | Number of | Flag CY | Skip condition | | code | 1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 ₂ 2 9 C ₁₆ | words | cycles | | | | | | 1 | 1 | _ | _ | | Operation: | Stop of watchdog timer function enabled | Grouping: | Other oper | | | | | | Description | | struction | timer function by the after executing the | | El (Enable | Interrupt) | | | | | | Instruction | D9 D0 | Number of words | Number of cycles | Flag CY | Skip condition | | | 16 | 1 | 1 | _ | _ | | Operation: | (INTE) ← 1 | Grouping: | Interrupt co | ontrol oper | ation | | | | Description | | | enable flag INTE, and | | | | Note: | | enabled I | by executing the EI ining 1 machine cycle. | | EPOF (Ena | D9 D0 | Number of words | Number of cycles | Flag CY | Skip condition | | | | Grouping: | Other oper | -4: | | | Operation: | POF instruction, POF2 instruction valid | | : Makes the | immedia | te after POF or POF2 xecuting the EPOF in- | | | t Accumulator from port P0) | | | | | | Instruction code | D9 D0 1 1 0 0 0 0 0 2 6 0 40 | Number of words | Number of cycles | Flag CY | Skip condition | | code | 1 0 0 1 1 0 0 0 0 0 0 2 2 6 0 16 | 1 | 1 | _ | - | | Operation: | (A) ← (P0) | Grouping:
Description | Input/Outp | | n
f port P0 to register A. | | | | | | | | | IAP1 (Inpu | t Accumulator from port P1) | | | | | |------------------|--|--------------------------|------------------|--------------------------|--| | Instruction code | D9 D0 | Number of words | Number of cycles | Flag CY | Skip condition | | Couc | 1 0 0 1 1 0 0 0 0 1 1 2 2 6 1 16 | 1 | 1 | _ | - | | Operation: | (A) ← (P1) | Grouping: | Input/Outp | | | | | | Description | : Transfers t | he input of | port P1 to register A. | | IAP2 (Innu | t Accumulator from port P2) | | | | | | Instruction code | D9 D0 1 1 0 0 0 1 0 2 6 2 46 | Number of words | Number of cycles | Flag CY | Skip condition | | | | 1 | 1 | - | - | | Operation: | $(A) \leftarrow (P2)$ | Grouping: | Input/Outp | | n
port P2 to register A. | | IAD2 /leau | t Appumulator from part D2) | | | | | | | t Accumulator from port P3) | | Ni wala a maɗ | FI 0)/ | 01. | | Instruction code | D9 D0 1 1 0 0 0 1 1 ₂ 2 6 3 ₁₆ | Number of words | Number of cycles | Flag CY | Skip condition | | Onenetien | | 1 | 1 | | | | Operation: | (A) ← (P3) | Grouping: Description | Input/Outp | | n
port P3 to register A. | | | | | | | | | | ment register Y) | l | | E 01/ | | | Instruction code | D9 D0 0 0 0 1 0 0 1 1 0 0 1 3 40 | Number of words | Number of cycles | Flag CY | Skip condition | | | 0 0 0 0 1 0 0 1 1 2 0 1 3 16 | 1 | 1 | - | (Y) = 0 | | Operation: | (Y) ← (Y) + 1 | Grouping:
Description | sult of ac | he content
Idition, w | s of register Y. As a re
then the contents of
e next instruction in
contents of register Y in | | | d n in Accumulator) | | | | | | | | |------------------|--|---|------------------|-------------|--|--|--|--| | Instruction | D9 D0 | Number of words | Number of cycles | Flag CY | Skip condition | | | | | code | 0 0 0 1 1 1 n n n n ₂ 0 7 n ₁₆ | 1 | 1 | _ | Continuous description | | | | | Operation: | (A) ← n | Grouping: | Arithmetic | oneration | исэсприон | | | | | operation. | n = 0 to 15 | | | | the immediate field t | | | | | | | | register A. | | | | | | | | | | Ü | LA instruc | tions are continuous | | | | | | | | | | d, only the first LA in | | | | | | | | | | uted and other L | | | | | | | | | | d continuously ar | | | | | | | | skipped. | | , | | | | | LXY x, y (l | _oad register X and Y with x and y) | | | | | | | | | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | | | | code | 1 1 x3 x2 x1 x0 y3 y2 y1 y0 2 3 x y 16 | words | cycles | | | | | | | | | 1 | 1 | _ | Continuous | | | | | Operation: | 00 45 | | | description | | | | | | Operation: | $(X) \leftarrow x \ x = 0 \text{ to } 15$
$(Y) \leftarrow y \ y = 0 \text{ to } 15$ | Grouping: RAM addresses Description: Loads the value x in the immediate register X, and the value y in the imm | | | | | | | | | $(1) \leftarrow y \ y = 0 \ 0 \ 15$ | | | | | | | | | | | | - | | alue y in the immediat
Vhen the LXY instruc | | | | | | | | | - | | | | | | | | tions are continuously coded and executed only the first LXY instruction is executed and other LXY instructions coded continuously are skipped. | - Odoly dio c | жіррой. | | | | | | | register Z with z) | Number | Number | Flar OV | Chin andition | | | | | Instruction | D9 D0 | Number of words | Number of cycles | Flag CY | Skip condition | | | | | code | 0 0 0 1 0 0 1 0 21 20 2 0 4 +z 16 | 1 | 1 | _ | - | | | | | Operation: | $(Z) \leftarrow z z = 0 \text{ to } 3$ | Grouping: | RAM addre | esses | | | | | | - | | Description | : Loads the | value z in | the immediate field to | | | | | | | | register Z. | NOP (No C | , | | I | - o | | | | | | Instruction code | D9 D0 | Number of words | Number of cycles | Flag CY | Skip condition | | | | | coue | 0 0 0 0 0 0 0 0 0 0 0 2 0 0 16 | 1 | 1 | _
| - | | | | | Operation: | (PC) ← (PC) + 1 | Grouping | Other oper | ration | | | | | | Operation: | $(PC) \leftarrow (PC) + 1$ | Grouping: | | | 1 to program counte | | | | | | | Description | | | nain unchanged. | | | | | | | | value, allu | ouicis iei | nam unumanyeu. | OP0A (Out | tput port P0 from Accumulator) | | | | | |-----------------------------------|------------------------------------|-----------------------------|-------------------------------------|---|--| | Instruction | D9 Do | Number of | Number of | Flag CY | Skip condition | | code | 1 0 0 0 1 0 0 0 0 0 2 2 2 0 16 | words | cycles | | | | | 10 | 1 | 1 | _ | _ | | Operation: | (P0) ← (A) | Grouping: | Input/Outp | ut operatio | in . | | | | | | • | s of register A to port | | | | | P0. | | | | OP1A (Out | tput port P1 from Accumulator) | | | | | | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | 1 0 0 0 1 0 0 0 0 1 2 2 2 1 | words | cycles | | | | | | 1 | 1 | _ | _ | | Operation: | $(P1) \leftarrow (A)$ | Grouping: | Input/Outp | | | | | | Description | : Outputs th
P1. | e content | s of register A to port | | OR (logica
Instruction
code | D9 D0 0 0 0 1 1 0 0 1 2 0 1 9 16 | Number of words | Number of cycles | Flag CY | Skip condition | | Operation: | $(A) \leftarrow (A) OR (M(DP))$ | Grouping: | Arithmetic | operation | | | Operation. | $(A) \leftarrow (A) \cup (M(D(J))$ | | | | tion between the con- | | | | | | - | and the contents of
e result in register A. | | POF (Powe | · | I | | | | | Instruction code | D9 D0 | Number of words | Number of cycles | Flag CY | Skip condition | | code | 0 0 0 0 0 0 0 0 1 0 2 | 1 | 1 | _ | - | | Operation: | Transition to clock operating mode | Grouping: Description Note: | executing ing the EPOF executing in | ystem in cl
the POF ir
OF instruction
instruction
this instruct | ock operating state by astruction after execution. In is not executed before extion, this instruction is instruction. | | POF2 (Pow | ver OFf2) | | | | | | |--|--|--|--|---------------------------|---|--| | Instruction code | D9 D0 0 0 0 0 1 0 0 0 0 8 46 | Number of words | Number of cycles | Flag CY | Skip condition | | | | 0 0 0 0 0 1 0 0 2 0 0 16 | 1 | 1 | - | - | | | Operation: | Transition to RAM back-up mode | Grouping: | Other oper | ration | | | | | | Description | | | RAM back-up state by | | | | | | executing | the POF2 | 2 instruction after ex | | | | | | ecuting the | | | | | | | Note: | | | n is not executed before | | | | | | - | | ction, this instruction is instruction. | | | | te Accumulator Right) | | | | | | | Instruction code | D9 D0 0 0 0 1 1 1 0 1 0 1 D 46 | Number of words | Number of cycles | Flag CY | Skip condition | | | | 16 | 1 | 1 | 0/1 | - | | | Operation: | \rightarrow CY \rightarrow A3A2A1A0 | Grouping: Arithmetic operation | | | | | | | | Description | : Rotates 1 | bit of the co | ontents of register A in | | | | | | cluding the right. | contents | of carry flag CY to the | | | | | | 3 | RB j (Rese | t Bit) | | | | | | | RB j (Rese | D9 D0 | Number of | Number of | Flag CY | Skip condition | | | | • | words | cycles | Flag CY | Skip condition | | | Instruction code | D9 D0 0 0 0 1 0 0 1 1 j j 2 0 4 C +j 16 | words
1 | cycles
1 | - | Skip condition | | | Instruction code | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | words 1 Grouping: | cycles 1 Bit operation | | <u> </u> | | | Instruction code | D9 D0 0 0 0 1 0 0 1 1 j j 2 0 4 C +j 16 | words 1 Grouping: | cycles 1 Bit operation: Clears (0) | on the conten | ts of bit j (bit specified | | | Instruction code | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | words 1 Grouping: | cycles 1 Bit operation: Clears (0) | on the conten | ets of bit j (bit specified | | | Instruction code | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | words 1 Grouping: | Bit operation: Clears (0) by the va | on the conten | ts of bit j (bit specified | | | Instruction code | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | words 1 Grouping: | Bit operation: Clears (0) by the va | on the conten | ets of bit j (bit specified | | | Instruction code | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | words 1 Grouping: | Bit operation: Clears (0) by the va | on the conten | ets of bit j (bit specified | | | Instruction code Operation: | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | words 1 Grouping: | Bit operation: Clears (0) by the va | on
the conten | ets of bit j (bit specified | | | Instruction code Operation: RBK (Rese | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | words 1 Grouping: Description | Bit operation: Clears (0) by the var M(DP). | on the conten | ets of bit j (bit specified | | | Instruction code Operation: | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | words 1 Grouping: Description Number of words | Bit operation: Clears (0) by the var M(DP). | on the contentue j in the | ts of bit j (bit specified | | | Instruction code Operation: RBK (Rese | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | words 1 Grouping: Description | Bit operation: Clears (0) by the var M(DP). | on
the conten | ts of bit j (bit specified | | | Instruction code Operation: RBK (Rese | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | words 1 Grouping: Description Number of words 1 Grouping: | Bit operation: Clears (0) by the var M(DP). Number of cycles 1 Other ope | on the contentue j in the | - ots of bit j (bit specified e immediate field) o Skip condition | | | RBK (Resellation code | D9 | words 1 Grouping: Description Number of words 1 Grouping: Description | Bit operation: Clears (0) by the var M(DP). Number of cycles 1 Other operation: Sets reference when the sets reference to set | Flag CY ration ring data | skip condition Skip condition area to pages 0 to 6: truction is executed. | | | RBK (Resellation code | D9 | words 1 Grouping: Description Number of words 1 Grouping: Description | Bit operation: Clears (0) by the var M(DP). Number of cycles 1 Other operation: Sets reference when the sets reference to set | Flag CY ration ring data | sts of bit j (bit specified e immediate field) o | | | RBK (Resellation code | D9 | words 1 Grouping: Description Number of words 1 Grouping: Description | Bit operation: Clears (0) by the var M(DP). Number of cycles 1 Other operation: Sets reference when the sets reference to set | Flag CY ration ring data | skip condition Skip condition area to pages 0 to 63 truction is executed. | | | RBK (Resellation code | D9 | words 1 Grouping: Description Number of words 1 Grouping: Description | Bit operation: Clears (0) by the var M(DP). Number of cycles 1 Other operation: Sets reference when the sets reference to set | Flag CY ration ring data | skip condition Skip condition area to pages 0 to 6-truction is executed. | | | | Carry flag) | | | | | | | | | | | | | |----------------------------------|--|----------|-----|-------|-----|----------------|-----|---|------|--------------------------|---|---------------|-----------------------| | Instruction code | D9 | T | | _ | | D ₀ | | | | Number of words | Number of cycles | Flag CY | Skip condition | | code | 0 0 0 | 0 0 | 0 | 0 1 | 1 | 0 2 | 0 | 0 | 6 16 | 1
| 1 | 0 | _ | | Operation: | (CY) ← 0 | | | | | | | | | Grouping: | Arithmetic | operation | | | operation. | (01) (0 | | | | | | | | | | : Clears (0) | | in CY | | | | | | | | | | | | | | | | | RCP (Rese | et Port C) | | | | | | | | | | | | | | Instruction code | D9 1 | 0 0 | 0 | 1 1 | 0 | D0 | 2 | 8 | C 16 | Number of words | Number of cycles | Flag CY | Skip condition | | | | 1 - 1 - | 1-1 | | 1 - | 2 | ! L | | 16 | 1 | 1 | _ | _ | | Operation: | (C) ← 0 | | | | | | | | | Grouping: | Input/Outp | ut operation | on | | • | . , - | | | | | | | | | | : Clears (0) | | | | RD (Reset
Instruction
code | port D spec | cified b | | ister | | D0
0 | 0 | 1 | 4 46 | Number of words | Number of cycles | Flag CY | Skip condition | | | | | | | | 12 | | | 16 | 1 | 1 | _ | _ | | Operation: | $(D(Y)) \leftarrow 0$ | | | | | | | | | Grouping: | Input/Outp | | | | | However,
(Y) = 0 to 9 | | | | | | | | | Description | : Clears (0)
ister Y. | to a bit of p | oort D specified by r | | RT (ReTur | n from subr | outine) | | | | Do | | | | Niverbanaf | Number of | Floor CV | Olio andition | | code | D9 | | Tal | 0 4 | Τ_ | D ₀ | | | 4 | Number of words | Number of cycles | Flag CY | Skip condition | | coue | 0 0 0 | 1 0 | 0 | 0 1 | 0 | 0 2 | 0 | 4 | 4 16 | 1 | 2 | _ | _ | | Operation: | $(PC) \leftarrow (SK)$
$(SP) \leftarrow (SP)$ | | | | | | | | | Grouping:
Description | Return ope
: Returns f
called the | rom subro | outine to the rout | | RTI (ReTui | n from Interrupt) | | | | | | |-------------|--|---|------------------|-------------|--------------------------|--| | Instruction | D9 D0 | Number of words | Number of cycles | Flag CY | Skip condition | | | code | 0 0 0 1 0 0 0 1 1 0 2 0 1 1 6 | 1 | 1 | _ | _ | | | Operation: | (DC) (SK(SD)) | Crauning | Datum | ration | | | | Operation: | $(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$ | Grouping: | Return ope | | upt service routine t | | | | $(OI) \leftarrow (OI)$ | Description | main routir | | upt service routille | | | | | | | | of data pointer (X, Y, Z | | | | | | | | s, NOP mode status b | | | | | | | • | iption of the LA/LXY in | | | | | | | | and register B to th | | | | | | states just | - | - | | | RTS (ReTu | rn from subroutine and Skip) | | | | | | | Instruction | D9 D0 | Number of words | Number of cycles | Flag CY | Skip condition | | | code | 0 0 0 1 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 | 1 | 2 | _ | Skip at uncondition | | | | | | | | | | | Operation: | $(PC) \leftarrow (SK(SP))$ | Grouping: | Return ope | | | | | | $(SP) \leftarrow (SP) - 1$ | Description: Returns from subroutine to the called the subroutine, and skips the | | | | | | | | | struction a | | | | | | | | Struction a | t unconditi | on. | SB j (Set E | sit) | | | | | | | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | | code | 0 0 0 1 0 1 1 1 j j ₂ 0 5 ^C _{+j 16} | words | cycles | | | | | | L | 1 | 1 | _ | _ | | | Operation: | (Mj(DP)) ← 1 | Grouping: | Bit operation | on | | | | | j = 0 to 3 | Description: Sets (1) the contents of bit j (bit specified by | | | | | | | | | the value j | in the imm | nediate field) of M(DP) | SBK (Set E | Sank flan) | | | | | | | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | | code | 0 0 0 1 0 0 0 0 0 1 0 0 4 1 | words | cycles | | | | | | 0 0 0 1 0 0 0 0 1 2 0 4 1 16 | 1 | 1 | _ | _ | | | Operation: | When TABP p instruction is executed, P6 ← 1 | Grouping: | Other oper | ation | I | | | - | | | • | | rea to pages 64 to 12 | | | | | | when the 1 | ABP p ins | truction is executed. | | | | | | | | ed in M34554M8. | | | | | in M3 | 4004IVIU, refe | iiiig aata | area is pages 64 to 95 | 1 | | | | | | SC (Set Ca | arry flag) | | | | | |-------------|--|-----------------|------------------|--------------|---| | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | 0 0 0 0 0 0 1 1 1 1 2 | words | cycles | | | | | | 1 | 1 | 1 | _ | | Operation: | (CY) ← 1 | Grouping: | Arithmetic | operation | | | | | Description | : Sets (1) to | carry flag | CY. | SCP (Set F | · | r | Γ | 1 | | | Instruction | D9 D0 | Number of words | Number of cycles | Flag CY | Skip condition | | code | 1 0 1 0 0 0 1 1 0 1 ₂ 2 8 D ₁₆ | 1 | 1 | _ | | | | | ' | ' | | | | Operation: | (C) ← 1 | Grouping: | Input/Outp | | n | | | | Description | : Sets (1) to | port C. | rt D specified by register Y) | | | | | | Instruction | D9 D0 | Number of words | Number of cycles | Flag CY | Skip condition | | code | 0 0 0 0 0 1 0 1 0 1 2 0 1 5 | 1 | 1 | _ | | | | | | | | | | Operation: | (D(Y)) ← 1 | Grouping: | Input/Outp | | | | | (Y) = 0 to 9 | Description | ter Y. | a bit of po | rt D specified by regis- | | | | | ter r. | ip Equal, Accumulator with immediate data n) | Niam 1 | Month | Els = OV | 01 | | Instruction | D9 D0 | Number of words | Number of cycles | Flag CY | Skip condition | | code | 0 0 0 0 1 0 0 1 0 1 2 0 2 5 | 2 | 2 | _ | (A) = n | | | 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | . , | | | | Grouping: | Compariso | | | | Operation: | (A) = n? | Description | • | | uction when the con equal to the value n in | | | n = 0 to 15 | | the immed | _ | equal to the value hilf | | | | | | | struction when the con | | | | | | _ | not equal to the value i | | | | | in the imm | ediate field | d. | | | | 1 | | | | | SEAM (Ski | Equal, Accumulator with Memory) | | | | | |------------------|---|-----------------|--------------------------------------|---|---| | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | 0 0 0 0 1 0 0 1 1 0 2 0 16 | words
1 | cycles
1 | _ | (A) = (M(DP)) | | Operation: | (A) = (M(DP))? | Grouping: | Compariso | n operatio | n | | peration. | $(A) = (W(D^T))$: | Description | • | • | uction when the cor | | | | Description | tents of reg
M(DP).
Executes t | gister A is e
he next ins
egister A | equal to the contents of struction when the cor | | SNZ0 (Skip | if Non Zero condition of external 0 interrupt reques | ⊥
st flag) | | | | | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | | words | cycles | | | | | 16 | 1 | 1 | _ | V10 = 0: (EXF0) = 1 | | Operation: | V10 = 0: (EXF0) = 1 ? | Grouping: | Interrupt o | peration | I | | | After skipping, (EXF0) ← 0 | | : When V10 | = 0 : Ski | os the next instruction | | | V10 = 1: SNZ0 = NOP
(V10 : bit 0 of the interrupt control register V1) | | when exteris "1." After | rnal 0 inter
r skipping, | rupt request flag EXF
clears (0) to the EXF
0 flag is "0," execute | | | | | the next in | struction. | | | | | | When V10 | = 1 : This | s instruction is equiva | | | | | lent to the | NOP instru | uction. | | SNZ1 (Skip | if Non Zero condition of external 1 interrupt reques | st flag) | | | | | Instruction | D9 D0 | Number of words | Number of cycles | Flag CY | Skip condition | | code | 0 0 0 0 1 1 1 1 0 0 1 2 0 3 9 16 | 1 | 1 | _ | V11 = 0: (EXF1) = 1 | | Operation: | V11 = 0: (EXF1) = 1 ? | Grouping: | Interrupt of | peration | | | | After skipping, (EXF1) \leftarrow 0 | Description | : When V11 | = 0 : Skip | os the next instruction | | | V11 = 1: SNZ1 = NOP | | when exter | nal 1 inter | rupt request flag EXF | | | (V11 : bit 1 of the interrupt control register V1) | | is "1." After | skipping, | clears (0) to the EXF | | | | | flag. Wher | the EXF | 1 flag is "0," executes | | | | | the next in | | | | | | | | | instruction is equiva | | | | | lent to the | NOP Instru | action. | | | o if Non Zero condition of external 0 Interrupt input | ' | 1 | T | | | Instruction code | D9 D0 D0 0 0 1 1 1 0 1 0 0 3 A | Number of words | Number of cycles | Flag CY | Skip condition | | | 16 | 1 | 1 | _ | I12 = 0 : (INT0) = "L"
I12 = 1 : (INT0) = "H" | | Operation: | I12 = 0 : (INT0) = "L" ? | Grouping: | Interrupt o | | | | | I12 = 1 : (INT0) = "H" ? | Description | | | s the next instruction | | | (I12 : bit 2 of the interrupt control register I1) | | | | T0 pin is "L." Execute when the level of INT | | | | | When I12 when the I | evel of IN | os the next instructio
Γ0 pin is "H." Execute
when the level of INT | | | ip if Non Zero condition of external 1 Interrupt input | `- | T | T | | | |------------------|---|-------------------
--|--|---|--| | Instruction code | D9 D0 | Number of words | Number of cycles | Flag CY | Skip condition | | | | 0 0 0 0 1 1 1 1 0 1 1 2 0 3 B 16 | 1 | 1 | _ | I22 = 0 : (INT1) = "L"
I22 = 1 : (INT1) = "H" | | | Operation: | I22 = 0 : (INT1) = "L" ? | Grouping: | Interrupt of | peration | | | | | I22 = 1 : (INT1) = "H" ? (I22 : bit 2 of the interrupt control register I2) | Description | when the letter next in pin is "H." When I22 when the letter w | evel of IN struction version v | os the next instruction T1 pin is "L." Execute: when the level of INT os the next instruction T1 pin is "H." Execute: | | | | | | the next in pin is "L." | struction | when the level of INT | | | SNZP (Ski | p if Non Zero condition of Power down flag) | | | | | | | Instruction code | D9 D0 0 0 0 0 0 0 0 1 1 0 0 0 3 46 | Number of words | Number of cycles | Flag CY | Skip condition | | | | 0 0 0 0 0 0 1 1 2 0 0 3 16 | 1 | 1 | - | (P) = 1 | | | Operation: | (P) = 1 ? | Grouping: | Other oper | ation | , | | | | | Description | : Skips the r | next instru | ction when the P flag is | | | | | | | ping, the | P flag remains un | | | | | | changed. | | | | | | | | | the next i | nstruction when the F | | | | | | flag is "0." | | | | | SNZT1 (Sk | rip if Non Zero condition of Timer 1 interrupt request | flag) | , | | | | | Instruction code | D9 D0 1 0 0 0 0 0 0 2 8 0 | Number of words | Number of cycles | Flag CY | Skip condition | | | | 16 | 1 | 1 | _ | V12 = 0: (T1F) = 1 | | | Operation: | V12 = 0: (T1F) = 1 ? | Grouping: | Timer oper | | | | | | After skipping, (T1F) \leftarrow 0
V12 = 1: SNZT1 = NOP | Description | | | s the next instruction | | | | V12 = 1: SNZ11 = NOP
(V12 = bit 2 of interrupt control register V1) | | | | pt request flag T1F is
clears (0) to the T1F | | | | (* · · · · · · · · · · · · · · · · · · · | | | | ag is "0," executes the | | | | | next instruction. | | | | | | | | | When V12 = 1 : This instruction is e lent to the NOP instruction. | | | | | SNZT2 (Sk | cip if Non Zero condition of Timer 2 interrupt request | flag) | | | | | | | D9 D0 | Number of words | Number of cycles | Flag CY | Skip condition | | | Instruction | | | 1 | _ | V13 = 0: (T2F) = 1 | | | | 1 0 1 0 0 0 0 0 1 2 2 8 1 16 | 1 | 1 | | | | | Instruction code | 1 0 1 0 0 0 0 0 1 2 2 8 1 1 ₆ V13 = 0: (T2F) = 1 ? | 1 Grouping: | Timer oper | l
ation | | | | Instruction code | V13 = 0: (T2F) = 1? After skipping, (T2F) \leftarrow 0 | | Timer operations: When V13 | = 0 : Skip | | | | Instruction code | V13 = 0: (T2F) = 1? After skipping, (T2F) \leftarrow 0 V13 = 1: SNZT2 = NOP | Grouping: | Timer operations: When V13 when times | = 0 : Skip
r 2 interru | pt request flag T2F is | | | Instruction code | V13 = 0: (T2F) = 1? After skipping, (T2F) \leftarrow 0 | Grouping: | Timer operations: When V13 when times "1." After s | = 0 : Skip
r 2 interru
skipping, | pt request flag T2F is
clears (0) to the T2F | | | Instruction | V13 = 0: (T2F) = 1? After skipping, (T2F) \leftarrow 0 V13 = 1: SNZT2 = NOP | Grouping: | Timer operations: When V13 when times "1." After s | = 0 : Skip
r 2 interru
skipping,
the T2F fl | pt request flag T2F is
clears (0) to the T2F | | | Instruction code | V13 = 0: (T2F) = 1? After skipping, (T2F) \leftarrow 0 V13 = 1: SNZT2 = NOP | Grouping: | Timer oper: When V13 when times "1." After s flag. When next instruc | = 0 : Skip
r 2 interruskipping,
the T2F fletion.
= 1 : This | os the next instruction pt request flag T2F is clears (0) to the T2F ag is "0," executes the instruction is equiva- | | | SNZT3 (Sk | p if Non Zero condition of Timer 3 interrupt request | flag) | | | | |-------------|--|-----------------|------------------|-------------|--------------------------| | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | 1 0 1 0 0 0 0 1 0 2 8 2 | words | cycles | | | | | 16 | 1 | 1 | _ | V20 = 0: (T3F) = 1 | | Operation: | V20 = 0: (T3F) = 1 ? | Grouping: | Timer oper | ation | | | • | After skipping, $(T3F) \leftarrow 0$ | Description | | | os the next instruction | | | V20 = 1: SNZT3 = NOP | | | | pt request flag T3F is | | | (V20 = bit 0 of interrupt control register V2) | | | | clears (0) to the T3F | | | (V20 = bit o of interrupt control register V2) | | | | ag is "0," executes the | | | | | - | | ag is 0, executes the | | | | | next instru | | | | | | | | | instruction is equiva- | | | | | lent to the | NOP instri | action. | | | ip if Non Zero condition of Timer 4 inerrupt request | | | | | | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | 1 0 1 0 0 0 0 1 1 2 2 8 3 | words | cycles | | | | | | 1 | 1 | _ | V23 = 0: (T4F) = 1 | | Operation: | V23 = 0: (T4F) = 1 ? | Grouping: | Timer ope | ration | | | | After skipping, $(T4F) \leftarrow 0$ | Description | | | ps the next instruction | | | V23 = 1: SNZT4 = NOP | Besonption | | | pt request flag T4F is | | | (V23 = bit 3 of interrupt control register V2) | | | | clears (0) to the T4F | | | (V23 = bit 3 of interrupt control register V2) | | | | lag is "0," executes the | | | | | next instru | | lag is 0, executes the | | | | | | | s instruction is equiva- | | | | | | | ' | | | | | lent to the | NOP Instr | uction. | | | ip if Non Zero condition of Timer 5 inerrupt request | | T | | | | Instruction | D9 D0 | Number of words | Number of cycles | Flag CY | Skip condition | | code | 1 0 1 0 0 0 0 1 0 0 2 2 8 4 16 | | - | | | | | | 1 | 1 | _ | V21 = 0: (T5F) = 1 | | Operation: | V21 = 0: (T5F) = 1 ? | Grouping: | Timer oper | ration | | | | After skipping, (T5F) \leftarrow 0 | Description | : When V21 | = 0 : Ski | os the next instruction | | | V21 = 1: SNZT5 = NOP | | when time | r 5
interru | pt request flag T5F is | | | (V21 = bit 1 of interrupt control register V2) | | "1." After | skipping, | clears (0) to the T5F | | | | | flag. Wher | the T5F f | lag is "0," executes the | | | | | next instru | ction. | | | | | | When V21 | = 1 : This | instruction is equiva- | | | | | lent to the | NOP instr | uction. | | SVDE (Set | Voltage Detector Enable flag) | | | | | | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | 1 0 1 0 0 1 0 0 1 1 2 9 3 | words | cycles | | | | | 1 0 1 0 0 1 0 0 1 1 2 2 3 3 16 | 1 | 1 | _ | _ | | Operation: | At power down mode, voltage drop detection circuit valid | Grouping: | Other ope | ration | | | Operation. | At power down mode, voltage drop detection chount valid | Description | | | e drop detection circuit | | | | Description | | | ck operating mode and | | | | | | | when VDCE pin is "H". | p if Zero, Bit) | | | | | | |------------------|--|--|------------------|---------------|-----------------------------|--| | Instruction code | D9 D0 | Number of words | Number of cycles | Flag CY | Skip condition | | | coue | 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 2 | 1 | 1 | _ | (Mj(DP)) = 0 $j = 0 to 3$ | | | Operation: | (Mj(DP)) = 0 ? | Grouping: | Bit operation | on | • | | | | j = 0 to 3 | | | | uction when the con | | | | | | tents of bi | t j (bit spe | cified by the value j ir | | | | | | the immed | iate field) d | of M(DP) is "0." | | | | | | Executes t | he next ins | struction when the con- | | | | | | tents of bit | j of M(DP) | is "1." | | | 070 (OL: | it Zana Camarilan) | | | | | | | Instruction | if Zero, Carry flag) D9 D0 | Number of | Number of | Flag CY | Skip condition | | | code | | words | cycles | riag C1 | Skip condition | | | | 16 | 1 | 1 | _ | (CY) = 0 | | | Operation: | (CY) = 0 ? | Grouping: | Arithmetic | - | | | | | | Description: Skips the next instruction when the | | | | | | | | | tents of ca | | | | | | | | | ping, the | CY flag remains un | | | | | | changed. | | | | | | | | tents of the | | struction when the con- | | | | | | terits or the | e CT flag is | 5 I. | | | SZD (Skip | if Zero, port D specified by register Y) | | | | | | | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | | code | 0 0 0 0 1 0 0 1 0 0 1 0 0 1 | words
2 | cycles
2 | _ | (D(Y)) = 0 | | | | 0 0 0 0 1 0 1 0 1 1 ₂ 0 2 B ₁₆ | 2 | | | (Y) = 0 to 7 | | | 0 | | Grouping: | Input/Outp | ut operation | nn | | | Operation: | (D(Y)) = 0? | Description | | | ction when a bit of por | | | | (Y) = 0 to 7 | | | | er Y is "0." Executes the | | | | | | next instru | ction when | the bit is "1." | | | | | | | | | | | | | | | | | | | T1AB (Tra | nsfer data to timer 1 and register R1 from Accumula | tor and red | ister B) | | | | | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | | code | 1 0 0 0 1 1 0 0 0 0 2 2 3 0 | words | cycles | | | | | | | 1 | 1 | _ | _ | | | Operation: | (T17−T14) ← (B) | Grouping: | Timer oper | | | | | | $(R17-R14) \leftarrow (B)$ | Description | | | nts of register B to the | | | | $(T13-T10) \leftarrow (A)$ | | - | | imer 1 and timer 1 re | | | | $(R13-R10) \leftarrow (A)$ | | _ | | insfers the contents o | | | | | | _ | | order 4 bits of timer 1 | | | | | | and timer | reload re | gister K1. | T2AB (Trai | nsfer data to timer 2 and register R2 from Accumula | tor and reg | ister B) | | | |-------------|--|-------------|--------------|-------------|--------------------------| | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | 1 0 0 0 1 1 0 0 0 1 1 2 2 3 1 16 | words
1 | cycles
1 | _ | _ | | | | | | | | | Operation: | $(T27\text{-}T24) \leftarrow (B)$ | Grouping: | Timer oper | | | | | $(R27-R24) \leftarrow (B)$ | Description | | | its of register B to the | | | $(T23-T20) \leftarrow (A)$ | | high-order | 4 bits of t | imer 2 and timer 2 re- | | | $(R23-R20) \leftarrow (A)$ | | load regist | er R2. Tra | nsfers the contents of | | | | | register A t | to the low- | order 4 bits of timer 2 | | | | | and timer 2 | reload re | gister R2. | | | | | | | | | | | | | | | | T3AB (Trai | nsfer data to timer 3 and register R3 from Accumula | tor and red | ister B) | | | | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | | words | cycles | | | | 000.0 | 1 0 0 0 1 1 0 0 1 0 ₂ 2 3 2 ₁₆ | 1 | 1 | _ | _ | | | | | | | | | Operation: | (T37–T34) ← (B) | Grouping: | Timer oper | | | | | $(R37-R34) \leftarrow (B)$ | Description | | | nts of register B to the | | | $(T33-T30) \leftarrow (A)$ | | 0 | | imer 3 and timer 3 re- | | | $(R33-R30) \leftarrow (A)$ | | _ | | insfers the contents of | | | | | - | | order 4 bits of timer 3 | | | | | and timer 3 | 3 reload re | gister R3. | | | | | | | | | | | | | | | | T4AB (Trai | nsfer data to timer 4 and register R4L from Accumul | ator and re | gister B) | | | | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | 1 0 0 0 1 1 0 0 1 1 2 2 3 3 16 | words | cycles | | | | | | 1 | 1 | _ | _ | | Operation: | (T47–T44) ← (B) | Grouping: | Timer oper | ation | | | • | $(R4L7-R4L4) \leftarrow (B)$ | Description | : Transfers | the conter | nts of register B to the | | | $(T43-T40) \leftarrow (A)$ | | high-order | 4 bits of t | imer 4 and timer 4 re- | | | $(R4L3-R4L0) \leftarrow (A)$ | | load regist | er R4L. Tra | ansfers the contents of | | | | | register A | to the low- | order 4 bits of timer 4 | | | | | and timer 4 | 1 reload re | gister R4L. | | | | | | | | | | | | | | | | T4HAB (Tr | ansfer data to register R4H from Accumulator and r | egister B) | | | | | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | 1 0 0 0 1 1 0 1 1 1 2 2 3 7 | words | cycles | | | | | 16 | 1 | 1 | _ | _ | | Operation: | (R4H7–R4H4) ← (B) | Grouping: | Timer oper | ation | | | Operation. | $(R4H3-R4H0) \leftarrow (A)$ | | | | nts of register B to the | | | (NHIO NHIO) (VI) | | | | imer 4 and timer 4 re- | | | | | - | | ansfers the contents of | | | | | _ | | order 4 bits of timer 4 | | | | | _ | | gister R4H. | | | | | | | . | | | | | | | | | | | | | | | | T4R4L (Tra | ansfer data to timer 4 from register R4L) | | | | | |------------------|---|-----------------|------------------|--|--| | Instruction | D9 D0 | Number of words | Number of cycles | Flag CY | Skip condition | | code | 1 0 1 0 0 1 0 1 1 1 1 2 2 9 7 16 | 1 | 1 | _ | _ | | O=====!==== | (T4= T4+) . (D41= D41+) | Grouping: | Timer oper | ration | | | Operation: | $(T47-T44) \leftarrow (R4L7-R4L4)$ | | | | nts of reload registe | | | (T43−T40) ← (R4L3−R4L0) | Description | R4L to time | | ints of reload registe | | TAB (Trans | sfer data to Accumulator from register B) | | | | | | Instruction | D9 D0 | Number of words | Number of cycles | Flag CY | Skip condition | | | 16 | 1 | 1 | _ | _ | | Operation: | (A) ← (B) | Grouping: | Register to | register ti | ansfer | | · | | Description | | | ts of register B to reg | | | nsfer data to Accumulator and register B from timer | · · | Number of | FloorCV | Chin and distant | | Instruction code | D9 D0 | Number of words | cycles | Flag CY | Skip condition | | | (2) | 1 | 1 | | _ | | Operation: | $(B) \leftarrow (T17-T14)$ | Grouping: | Timer oper | | | | | $(A) \leftarrow (T13-T10)$ | Description | | _ | der 4 bits (T17-T14) o | | | | | timer 1 to | - | der 4 bits (T13-T10) c | | | | | timer 1 to | | ger 4 bits (113-110) C | | TAB2 (Trai | nsfer data to Accumulator and register B from timer | <u> </u>
2) | | | | | Instruction | D9 D0 | Number of words | Number of cycles | Flag CY | Skip condition | | code | 1 0 0 1 1 1 0 0 0 1 2 2 7 1 16 | 1 | 1 | _ | - | | Operation: | (B) ← (T27–T24) | Grouping: | Timer ope | ration | | | | $(A) \leftarrow (T23-T20)$ | | timer 2 to | the high-or
register B.
the low-or | der 4 bits (T27-T24) o
der 4 bits (T23-T20) o | | | | | | | | | TADO /Tra | | and assistan D form times | ٥) | | | | |-------------|-------------------------------------|--|-----------------|---------------------------|--------------|---------------------------| | | | and register B from timer | т' | | - OV | | | Instruction | D9 | D0 | Number of words | Number of cycles | Flag CY | Skip condition | | code | 1 0 0 1 1 0 | 0 1 0 2 2 7 2 16 | 1 | 1 | _ | | | | | | · | · | | | | Operation: | $(B) \leftarrow (T37 – T34)$ | | Grouping: | Timer oper | ation | | | | $(A) \leftarrow (T33-T30)$ | | Description | : Transfers t | he high-or | der 4 bits (T37-T34) of | | | | | | timer 3 to r | egister B. | | | | | | | Transfers t | the low-ord | der 4 bits (T33-T30) of | | | | | | timer 3 to r | egister A. | TAB4 (Trai | nsfer data to Accumulator | and register B from timer | 4) | | | | | Instruction | D9 | D0 | Number of | Number of | Flag CY | Skip condition | | code | 1 0 0 1 1 1 0 | $\begin{bmatrix} 0 & 1 & 1 & 2 & 2 & 7 & 3 \end{bmatrix}_{16}$ | words | cycles | | | | | | | 1 | 1 | _ | _ | | Operation: | (B) ← (T47–T44) | | Grouping: | Timer oper | ation | | | | $(A) \leftarrow (T43-T40)$ | | Description | | | der 4 bits (T47-T44) of | | | , , , | | | timer 4 to r | • | , | | | | | | Transfers t | the low-ord | der 4 bits (T43-T40) of | | | | | | timer 4 to r | egister A. | TARE (Tra | nefer data to Accumulator | and register B from regist | or Fl | | | | | Instruction | D9 | D ₀ | Number of | Number of |
Flag CY | Skip condition | | code | | | words | cycles | riay CT | Skip condition | | code | 0 0 0 0 1 0 1 | 0 1 0 ₂ 0 2 A ₁₆ | 1 | 1 | _ | | | | | | ' | ı | | | | Operation: | (B) ← (E7–E4) | | Grouping: | Register to | register tr | ansfer | | | (A) ← (E3–E0) | | | | | rder 4 bits (E7-E4) of | | | | | | register E t | o register | B, and low-order 4 bits | | | | | | of register | E to regist | er A. | TABP p (T | ransfer data to Accumulat | or and register B from Pro | gram mem | ory in page | p) | | | Instruction | D9 | D0 | Number of | Number of | Flag CY | Skip condition | | code | 0 0 1 0 p5 p4 p3 | p2 p1 p0 2 0 8 p 16 | words | cycles | | • | | | | 16 P2 P1 P0 2 | 1 | 3 | - | - | | | | | Grouping | Arithmotic | operation | | | Operation: | $(SP) \leftarrow (SP) + 1$ | Description: Transfers bits 7 to | Grouping: | Arithmetic B and bits 3 t | | ster A. These bits 7 to 0 | | | $(SK(SP)) \leftarrow (PC)$ | | | | | 1 A0)2 specified by reg- | | | (PCH) ← p | isters A and D in | | | | | | | $(PCL) \leftarrow (DR2-DR0, A3-A0)$ | The pages which after the SBK insi | can be referre | ea as follows;
127 | | | | | $(B) \leftarrow (ROM(PC))7-4$ | after the RBK ins | | | | | | | $(A) \leftarrow (ROM(PC))_{3-0}$ | | | | | wer down: 0 to 63. | | | $(PC) \leftarrow (SK(SP))$ | Note: p is 0 to 63 for M34554M8. When this instruction is 6 | | | | | | | $(SP) \leftarrow (SP) - 1$ | stack register is used. | moouleu, De C | ratorul HUL IU (| 5401 1116 SI | aon booduse i staye of | | TABPS (Tr | ransfer data to Accumulator and register B from Pre | Scaler) | | | | |------------------|---|-----------------|------------------|------------------------|--| | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | 1 0 0 1 1 1 0 1 0 1 2 2 7 5 16 | words
1 | cycles
1 | _ | | | | | | _ | | | | Operation: | $(B) \leftarrow (TPS7-TPS4)$ | Grouping: | Timer oper | | | | | $(A) \leftarrow (TPS3-TPS0)$ | Description | TPS4) of | prescale
he low-ord | order 4 bits (TPS7
r to register B, an
er 4 bits (TPS3-TPS0
er A. | | TAD (Trans | sfer data to Accumulator from register D) | | | | | | Instruction code | D9 D0 0 0 1 0 1 0 0 0 1 0 5 1 | Number of words | Number of cycles | Flag CY | Skip condition | | | 16 | 1 | 1 | _ | _ | | Operation: | $(A2-A0) \leftarrow (DR2-DR0)$ | Grouping: | Register to | register tr | ansfer | | | (A ₃) ← 0 | | | | its of register D to the | | | | | low-order 3 | 3 bits (A2- | Ao) of register A. | | | | Note: | When this | instruction | on is executed, "0" i | | | | | stored to tl | ne bit 3 (As | s) of register A. | TAI1 (Trans | sfer data to Accumulator from register I1) | | | | | | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | 1 0 0 1 0 1 0 0 1 1 2 5 3 | words | cycles | 1 1 1 3 0 1 | omp condition | | | 1 0 0 1 0 1 0 1 1 2 2 3 3 16 | 1 | 1 | - | - | | Operation: | (A) ← (I1) | Grouping: | Interrupt or | peration | | | | | Description | : Transfers | the conten | ts of interrupt control | | | | | register I1 | to register | A. | TAI2 (Trans | sfer data to Accumulator from register I2) | | | | | | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | 1 0 0 1 0 1 0 1 0 0 2 2 5 4 | words | cycles | | | | | | 1 | 1 | _ | - | | Operation: | (A) ← (I2) | Grouping: | Interrupt or | peration | | | - | | | | | ts of interrupt contro | | | | | register I2 | | • | | | | | . 0 9.0 | to regions. | Instruction | nsfer data to Accumulator from register K0) | | 1 | | | |------------------|--|-----------------|------------------|--------------|------------------------| | code | D9 D0 1 0 1 0 1 1 0 2 5 6 46 | Number of words | Number of cycles | Flag CY | Skip condition | | | 1 0 0 1 0 1 0 1 0 2 2 5 0 16 | 1 | 1 | - | - | | Operation: | (A) ← (K0) | Grouping: | Input/Outp | ut operatio | n | | | (**) | | | | nts of key-on wakeu | | | | | control reg | jister K0 to | register A. | | TAK1 (Trai | nsfer data to Accumulator from register K1) | | | | | | Instruction code | D9 D0 | Number of words | Number of cycles | Flag CY | Skip condition | | | 16 | 1 | 1 | _ | _ | | Operation: | (A) ← (K1) | Grouping: | Input/Outp | ut operatio | n | | | | | : Transfers | | nts of key-on wakeu | | | | | | | | | TAK2 (Trai | nsfer data to Accumulator from register K2) | | | | | | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | 1 0 0 1 0 1 1 0 1 0 ₂ 2 5 A ₁₆ | words
1 | cycles
1 | _ | <u> </u> | | Operation: | (A) ← (K2) | Grouping: | Input/Outp | ut operatio | | | • | | | | | nts of key-on wakeu | | | | | control reg | ister K2 to | register A. | | TAL1 (Trar | sfer data to Accumulator from register L1) | | | | | | Instruction code | D9 D0 | Number of words | Number of cycles | Flag CY | Skip condition | | | 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 ₂ 2 4 A ₁₆ | 1 | 1 | _ | - | | Operation: | (A) ← (L1) | Grouping: | LCD contro | ol operation | 1 | | | | | : Transfers | | control register L1 to | | Operation: | | | register A. | | | | | nsfer data to Accumulator from Memory) | | 1 | | | |--------------|---|--|--------------|--------------|--------------------------| | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | 1 0 1 1 0 0 j j j j ₂ 2 C j ₁₆ | words
1 | cycles
1 | _ | _ | | Operation: | (A) ← (M(DP)) | Grouping: | RAM to re | nister trans | sfer | | Operation. | $(X) \leftarrow (M(DY))$
$(X) \leftarrow (X)EXOR(j)$ | | | | contents of M(DP) to | | | j = 0 to 15 | 2 coonpaion | | _ | sive OR operation is | | | , , , , , , | | _ | | egister X and the value | | | | | | | eld, and stores the re- | | | | | sult in regi | | • | | | | | | | | | TAMR (Tra | insfer data to Accumulator from register MR) | | | | | | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | 1 0 0 1 0 1 0 0 1 0 2 5 2 | words | cycles | | | | | 16 | 1 | 1 | _ | _ | | Operation: | (A) ← (MR) | Grouping: | Clock oper | ↓
ration | | | o por acroni | (iii) | | | | ts of clock control reg- | | | | | ister MR to | | • | | | | | | • | TAPU0 (Tr | ansfer data to Accumulator from register PU0) | | | | | | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | | words | cycles | 1 .ag 0 . | Orap corruition | | 0000 | 1 0 0 1 0 1 0 1 1 1 1 2 2 5 7 16 | 1 | 1 | | - | | Omenetien | (A) (DHO) | | | | | | Operation: | (A) ← (PU0) | Grouping: | Input/Outp | | | | | | Description: Transfers the contents of pull-up control | | | | | | | | register PU | JU to regist | er A. | TADUA /Tr | anofor data to Acquimulator from register DLIA | | | | | | IAPU1 (17 | ansfer data to Accumulator from register PU1) Do Do | Number of | Number of | Flag CY | Skip condition | | | | words | cycles | Flag C Y | Skip condition | | code | 1 0 0 1 0 1 1 1 1 0 ₂ 2 5 E ₁₆ | 1 | - | | | | | | ı | 1 | _ | _ | | Operation: | (A) ← (PU1) | Grouping: | Input/Outp | ut operation | n | | - | | | | | nts of pull-up control | | | | | register PL | 1 | | | | | TASP (Trai | nsfer data to Accumulator from Stack Pointer) | | | | | |------------------|---|--------------------------|------------------|--------------|--| | Instruction | D9 D0 | Number of words | Number of cycles | Flag CY | Skip condition | | code | 0 0 0 1 0 1 0 0 0 0 0 0 1 | 1 | 1 | - | - | | Operation: | (A2–A0) ← (SP2–SP0) | Grouping: | Register to | register tra | ansfer | | • | (A ₃) ← 0 | | | | s of stack pointer (SF | | | | | | | (A2-A0) of register | | | | Note: | | | n is executed, "0"
) of register A. | | TAV1 (Trar | nsfer data to Accumulator from register V1) | | | | | | Instruction | D9 D0 | Number of words | Number of cycles | Flag CY | Skip condition | | Code | 0 0 0 1 0 1 0 1 0 0 2 0 5 4 | 1 | 1 | - | _ | | Operation: | (A) ← (V1) | Grouping: | Interrupt o | | | | | | Description | : Transfers | the conten | ts of interrupt contro | | TAV2 (Trar | nsfer data to Accumulator from register V2) | | | | | | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | 0 0 0 1 0 1 0 1 0 1 2 0 5 5 | words
1 | cycles
1 | _ | <u> </u> | | Operation: | (A) ← (V2) | Grouping: | Interrupt o | peration | | | | () () –) | | | | ts of interrupt contro | | | | | register V2 | to register | · A. | | | nsfer data to Accumulator from register W1) | | | | | | Instruction code | D9 D0 1 0 0 1 0 1 1 2 4 B 16 | Number of words | Number of cycles | Flag CY | Skip condition | | | 16 | 1 | 1 | - | - | | | | 0 | Timer oper | ation | | | Operation: | (A) ← (W1) | Grouping: | THILL OPCI | alion | | | Operation: | (A) ← (W1) | Grouping:
Description | | the content | s of timer control reg | | TAW2 (Tra | nsfer data to Accumulator from register W2) | | | | | |------------------|--|--------------------------|------------------|----------------------------|-------------------------| | Instruction code | D9 D0 | Number of words | Number of cycles | Flag CY | Skip condition | | coue | 1 0 0 1 0 0 1 1 0 0 1 1 0 0 ₂ 2 4 C ₁₆ | 1 | 1 | _ | - | | Operation: | (A) ← (W2) | Grouping: | Timer ope | ration | | | | | Description | |
the conten
o register A | s of timer control reg | | TAW3 (Tra | nsfer data to Accumulator from register W3) | | | | | | Instruction code | D9 D0 | Number of words | Number of cycles | Flag CY | Skip condition | | | 16 | 1 | 1 | _ | - | | Operation: | (A) ← (W3) | Grouping:
Description | | | s of timer control reg | | | nsfer data to Accumulator from register W4) | Nevelores | Niverbanaf | Flor CV | Olim and diving | | Instruction code | D9 D0 1 0 0 1 0 0 1 1 1 1 0 2 2 4 E 16 | Number of words | Number of cycles | Flag CY | Skip condition | | Operation: | (A) ← (W4) | Grouping: | Timer oper | ration | | | | | Description | : Transfers | | s of timer control reg | | TAW5 (Tra | nsfer data to Accumulator from register W5) | | | | | | Instruction code | D9 D0 1 0 0 1 1 1 1 1 2 4 F | Number of words | Number of cycles | Flag CY | Skip condition | | | 16 | 1 | 1 | _ | - | | Operation: | (A) ← (W5) | Grouping:
Description | | | ts of timer control reg | | TAM6 (Tro | nsfer data to Accumulator from register W6) | • | | | | |-------------|---|-----------------------------------|---------------------------|---|--| | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | | words | cycles | l lag O I | Skip condition | | Jour | 1 0 0 1 0 1 0 0 0 0 0 0 1 2 5 0 16 | 1 | 1 | - | _ | | Operation: | (A) ← (W6) | Grouping: | Timer ope | ation | | | Operation. | (A) * (WO) | | | | ts of timer control reg- | | | | · | ister W6 to | | _ | | TAX (Trans | sfer data to Accumulator from register X) | | | | | | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | 0 0 0 1 0 1 0 0 1 0 2 | words
1 | cycles
1 | _ | | | | | | | | | | Operation: | $(A) \leftarrow (X)$ | Grouping: | Register to | | | | | | Description | ister A. | tne conten | ts of register X to reg- | | TAY (Trans | sfer data to Accumulator from register Y) | Number of | Number of | Flag CV | Skip condition | | code | | words | cycles | Flag CY | Skip condition | | 0000 | 0 0 0 0 0 1 1 1 1 1 1 2 0 1 F 16 | 1 | 1 | - | - | | Operation: | (A) ← (Y) | Grouping: | Register to | register ti | ansfer | | | | Description | : Transfers t
ter A. | he content | s of register Y to regis- | | TAZ (Trans | sfer data to Accumulator from register Z) | | | | | | Instruction | D9 D0 0 0 1 0 1 0 0 1 1 2 0 5 3 16 | Number of words | Number of cycles | Flag CY | Skip condition | | | 0 0 0 1 0 1 0 1 1 2 0 5 3 | 1 | 1 | _ | - | | Operation: | $(A_1, A_0) \leftarrow (Z_1, Z_0)$
$(A_3, A_2) \leftarrow 0$ | Grouping:
Description
Note: | low-order 2
After this | the conter
2 bits (A1, A
instructio | ransfer Ints of register Z to the A0) of register A. In is executed, "0" is Interested to the control of co | | | sfer data to register B from Accumulator) | (001111111 | | | | |------------------------------------|--|--|---|--------------|--| | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | | words | cycles | l lag 01 | OKIP CONGRESS | | 0000 | 0 0 0 0 0 0 1 1 1 1 0 2 0 0 E 16 | 1 | 1 | - | - | | Operation: | (B) ← (A) | Grouping: | Register to | register t | ransfer | | O P O I O O O O O O O O O O | | | | | ts of register A to regis- | | | | | ter B. | | | | TDA (Trans | sfer data to register D from Accumulator) | | | | | | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | 0 0 0 0 1 0 1 0 0 1 0 0 2 9 | words | cycles | | , | | | 16 | 1 | 1 | _ | - | | Operation: | $(DR2-DR0) \leftarrow (A2-A0)$ | Grouping: | Register to | register t | ransfer | | • | | | | | nts of the low-order 3 | | TEAB (Trainstruction code | nsfer data to register E from Accumulator and regist D9 D0 0 0 0 0 0 1 1 0 0 1 0 2 0 1 A 16 (E7–E4) ← (B) (E3–E0) ← (A) | er B) Number of words 1 Grouping: Description | Number of cycles 1 Register to: Transfers | | Skip condition - ransfer hts of register B to the | | | | | | | –E4) of register E, and | | | | | - | ts of regis | ter A to the low-order 4 | | TFR0A (Tr | ansfer data to register FR0 from Accumulator) | | | | | | Instruction code | D9 D0 1 0 1 0 0 0 2 2 2 8 16 | Number of words | Number of cycles | Flag CY | Skip condition | | | 16 | 1 | 1 | _ | - | | Operation: | (FR0) ← (A) | Grouping: | Input/Outp | ut operation | on | | - | | | : Transfers | the conte | nts of register A to the control register FR0. | | | | | | | | | ansfer data to register FR1 from Accumulator) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Number of words 1 Grouping: Description | : Transfers | | Skip condition – on hts of register A to the control register FR1. | |--|---|---
---|---| | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | words 1 Grouping: | cycles 1 Input/Outp Transfers | -
out operation
the conter | nn
nts of register A to the | | (FR1) ← (A) ansfer data to register FR2 from Accumulator) | Grouping: | Input/Outp | out operation the conter | nts of register A to the | | ansfer data to register FR2 from Accumulator) | | : Transfers | the conter | nts of register A to the | | | | | | | | Do Do | | | | | | | Number of words | Number of cycles | Flag CY | Skip condition | | 116 | 1 | 1 | _ | _ | | (FR2) ← (A) | Grouping: | | | | | | Description | | | - | | sfer data to register I1 from Accumulator) | | | | | | D9 D0 1 0 1 1 1 2 1 7 | Number of words | Number of cycles | Flag CY | Skip condition | | 16 | 1 | 1 | - | _ | | (I1) ← (A) | Grouping: | | | | | | Description | | | - | | sfer data to register I2 from Accumulator) | | | | | | D9 D0 | Number of words | Number of cycles | Flag CY | Skip condition | | 1 0 0 0 0 1 1 0 0 0 2 2 1 8 16 | 1 | 1 | - | - | | (I2) ← (A) | Grouping:
Description | : Transfers | the content | - | | | Figure 3. (FR2) \leftarrow (A) Sefer data to register I1 from Accumulator) D9 D0 1 0 0 0 0 1 0 1 1 1 2 2 1 7 16 (I1) \leftarrow (A) Sefer data to register I2 from Accumulator) D9 D0 1 0 0 0 0 1 1 0 0 0 0 2 2 1 8 16 | Second to the second content of secon | (FR2) \leftarrow (A) Grouping: Input/Outp Description: Transfers port output Sefer data to register I1 from Accumulator) Description: Transfers port output Number of words cycles 1 1 1 (I1) \leftarrow (A) Grouping: Interrupt of Description: Transfers rupt control Description: Transfers rupt control Number of words cycles 1 1 1 Grouping: Interrupt of Description: Transfers rupt control Number of words cycles 1 1 1 Grouping: Interrupt of Description: Transfers rupt control Number of words cycles 1 1 1 (I2) \leftarrow (A) Grouping: Interrupt of Description: Transfers Grouping: Interrupt of Description: Transfers | $(FR2) \leftarrow (A) \\ \hline \begin{array}{c} \textbf{Grouping:} \\ \textbf{Description:} \\ Transfers the content port output structure of port output structure of port output structure of port output structure of the ou$ | | TK0A (Trai | nsfer data to register K0 from Accumulator) | | | | | |---------------------------|---|--------------------------|---------------------------------------|-------------|--| | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | 1 0 0 0 0 1 1 0 1 1 2 1 B | words | cycles | | | | | 1 0 0 0 0 1 1 0 1 1 2 2 1 5 16 | 1 | 1 | - | - | | Operation: | (K0) ← (A) | Grouping: | Input/Outp | ut operatio | n | | · | | | | | ts of register A to key- | | | | | on wakeup | control re | gister K0. | | TK1A (Trai | nsfer data to register K1 from Accumulator) | | | | | | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | 1 0 0 0 0 1 0 1 0 0 2 2 1 4 16 | words
1 | cycles
1 | _ | | | | | ' | ı | _ | | | Operation: | $(K1) \leftarrow (A)$ | Grouping: | Input/Outp | | | | | | Description | on wakeup | | ts of register A to key-
gister K1. | | TK2A (Trainstruction code | nsfer data to register K2 from Accumulator) D9 D0 1 0 0 0 0 1 0 1 0 1 2 2 1 5 16 | Number of words | Number of cycles | Flag CY | Skip condition | | | | 1 | 1 | _ | _ | | Operation: | (K2) ← (A) | Grouping: | Input/Outp | | | | | | Description | : Transfers
on wakeup | | ts of register A to key-
gister K2. | | | nsfer data to register L1 from Accumulator) | | | | | | Instruction code | D9 D0 1 0 1 0 1 0 A 46 | Number of words | Number of cycles | Flag CY | Skip condition | | | 16 | 1 | 1 | - | - | | Operation: | (L1) ← (A) | Grouping:
Description | LCD opera
Transfers
control reg | the conten | ts of register A to LCD | | | | | | | | | TL2A (Tran | nsfer data to register L2 from Accumulator) | | | | | | |-------------|---|--|------------------------------|---|---|--| | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | | code | 1 0 0 0 0 0 1 0 1 1 ₂ 2 0 B ₁₆ | words
1 | cycles
1 | _ | | | | | | | | | | | | Operation: | (L2) ← (A) | Grouping: | LCD opera | | | | | | | Description | control reg | | ts of register A to LCD | | | TL3A (Tran | nsfer data to register L3 from Accumulator) | | | | | | | Instruction | D9 D0 1 0 0 0 0 1 1 0 0 0 2 0 C | Number of words | Number of cycles | Flag CY | Skip condition | | | | 16 | 1 | 1 | _ | - | | | Operation: | (L3) ← (A) | Grouping: | LCD opera | ition | | | | | | Description | : Transfers t
control reg | | ts of register A to LCD | | | TLCA (Tra | nsfer data to timer LC and register RLC from Accum D9 D0 1 0 0 0 0 0 1 1 0 1 2 2 0 D 16 | Number of words | Number of cycles | Flag CY | Skip condition | | | | | | | | | | | Operation: | $(LC) \leftarrow (A)$ | Grouping: Timer operation Description: Transfers the contents of register A to time | | | | | | | (RLC) ← (A) | Description | LC and rele | | • | | | | nsfer data to Memory from Accumulator) | | | | | | | Instruction | D9 D0 | Number of words | Number of cycles | Flag CY | Skip condition | | | code | 1 0 1 0 1 1 j j j ₂ 2 B ₁₆ | 1 | 1 | _ | _ | | | Operation: | (M(DP)) ← (A) | Grouping: | RAM to rec | gister trans | fer | | | | $(X) \leftarrow (X)EXOR(j)$
j = 0 to 15 | | to M(DP), a formed bet | an exclusiv
tween regi
ediate field | contents of register A
re OR operation is per-
ster X and the value
I, and stores the result | | | D9 D0 1 0 0 0 1 0 1 1 0 2 2 1 6 16 | Number of words | Number of | Flag CY | Skip condition | | |---|---|--|---
---|--| | 1 0 0 0 0 1 0 1 1 0 2 2 1 6 | words | | | · | | | | 1 | cycles
1 | _ | _ | | | | | | | | | | (MR) ← (A) | Grouping: | Other oper | ation | | | | | Description | | | ts of register A to cloc | | | insfer data to register PA from Accumulator) | | | | | | | D9 D0 1 0 1 0 1 0 1 0 2 A A | Number of words | Number of cycles | Flag CY | Skip condition | | | | 1 | 1 | _ | - | | | $(PA_0) \leftarrow (A_0)$ | Grouping: | Timer oper | ation | | | | | Description | | | | | | D9 D0 | ister B) Number of words | Number of cycles | Flag CY | Skip condition | | | 1 0 0 0 1 1 0 1 0 1 2 2 3 5 16 | 1 | 1 | - | - | | | $(RPS7-RPS4) \leftarrow (B)$ | Grouping: Timer operation | | | | | | (TPS7-TPS4) ← (B)
(RPS3-RPS0) ← (A)
(TPS3-TPS0) ← (A) | Description: Transfers the contents of register high-order 4 bits of prescaler and reload register RPS, and transfers tents of register A to the low-order prescaler and prescaler reload RPS. | | | rescaler and prescale
and transfers the con
the low-order 4 bits o | | | ransfer data to register PU0 from Accumulator) | | | | | | | D9 D0 1 0 1 1 0 1 2 2 D 40 | Number of words | Number of cycles | Flag CY | Skip condition | | | 116 | 1 | 1 | _ | _ | | | (PU0) ← (A) | Grouping:
Description | : Transfers | the conten | ts of register A to pull | | | | ansfer data to register PA from Accumulator) D9 D0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 2 2 A A $_{16}$ (PA0) \leftarrow (A0) Transfer data to Pre-Scaler from Accumulator and reg D9 D0 1 0 0 0 1 1 0 1 0 1 0 1 $_{2}$ 2 3 5 $_{16}$ (RPS7-RPS4) \leftarrow (B) (RPS3-RPS0) \leftarrow (A) (TPS3-TPS0) \leftarrow (A) Transfer data to register PU0 from Accumulator) D9 D0 1 0 0 0 1 0 1 0 1 1 0 1 $_{2}$ 2 2 D $_{16}$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | Insider data to register PA from Accumulator) Description: Transfers a control register data to register PA from Accumulator) Paramsfer data to Pre-Scaler from Accumulator and register B) Paramsfer data to Pre-Scaler from Accumulator and register B) Description: Transfers a register At register At $1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 $ | Transfer data to register PA from Accumulator) Description: Transfers the content control register MR. Number of words Number of words Number of yedges Number of words Number of words Number of yedges | | | TPU1A (Tr | ansfer data to register PU1 from Accumulator) | | | | | | |-------------|--|---|--|---------------------------------------|---------------------------|--| | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | | code | 1 0 0 0 1 0 1 1 1 0 ₂ 2 2 E ₁₆ | words | cycles | | | | | | | 1 | 1 | _ | _ | | | Operation: | (PU1) ← (A) | Grouping: | Input/Outp | ut operation | on | | | - | | Description: Transfers the contents of register A to pull- | | | | | | | | | up control | register Pl | J1. | | | TR1AB (Tr | ansfer data to register R1 from Accumulator and reg | ister B) | | | | | | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | | code | 1 0 0 0 1 1 1 1 1 1 2 3 F | words | cycles | | <u>'</u> | | | | 16 | 1 | 1 | _ | - | | | Operation: | (R17–R14) ← (B) | Grouping: Timer operation | | | | | | | (R13–R10) ← (A) | Description: Transfers the contents of register B to the | | | | | | | | | | der 4 bits (R17–R14) of reload regis- | | | | | | | - | | ents of register A to the | | | | | | | | B-R10) of reload regis | | | | | ter R1. | ransfer data to register R3 from Accumulator and reg | | | EL OV | 01. | | | Instruction | D9 D0 | Number of words | Number of cycles | Flag CY | Skip condition | | | code | 1 0 0 0 1 1 1 0 1 1 ₂ 2 3 B ₁₆ | 1 | 1 | | | | | | | ' | ľ | | _ | | | Operation: | $(R37-R34) \leftarrow (B)$ | Grouping: Timer operation | | | | | | | $(R33-R30) \leftarrow (A)$ | Description | escription: Transfers the contents of | | | | | | | high-order 4 bits (R37–R34) of reload regis- | | | | | | | | | ter R3, and | d the conte | ents of register A to the | | | | | | low-order 4 bits (R33-R30) of reload reg | | | | | | | | ter R3. | TV1A (Trai | nsfer data to register V1 from Accumulator) | | | | | | | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | | code | 0 0 0 0 1 1 1 1 1 1 ₂ 0 3 F ₁₆ | words | cycles | | | | | | 10 | 1 | 1 | _ | _ | | | Operation: | (V1) ← (A) | Grouping: Interrupt operation | | | | | | ороганон | | | Description: Transfers the contents of register A to inter- | | | | | | | rupt control register V1. | | | | | | | | | | rogistor v r. | ## MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued) | Instruction | nsfer data to register V2 from Accumulator) | | | | | |-------------|---|-------------------------------|--------------------------------|-----------------------------|---------------------------| | aada | D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | 0 0 0 0 1 1 1 1 1 0 ₂ 0 3 E ₁₆ | words | cycles | | | | | | 1 | 1 | _ | _ | | Operation: | (V2) ← (A) | Grouping: | Interrupt o | peration | | | | | Description | | | s of register A to inter- | | | | | rupt contro | ol register \ | /2. | TW1A (Tra | nsfer data to register W1 from Accumulator) | | | | | | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | 1 0 0 0 0 0 1 1 1 1 0 2 2 0 E 16 | words | cycles | | | | | | 1 | 1 | _ | _ | | Operation: | (W1) ← (A) | Grouping: | Timer ope | ration | | | • | | Description | | | ts of register A to timer | | | | | control reg | jister W1. | TW2A (Tra | Insfer data to register W2 from Accumulator) | | | | | | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | 1 0 0 0 0 0 1 1 1 1 2 0 F | words | cycles | | | | | 16 | 1 | 1 | _ | _ | | | | | | ration | | | Operation: | (M2) ← (Δ) | Grouping: | Timer one | | | | Operation: | (W2) ← (A) | Grouping: Description | Timer oper | | s of register A to timer | | Operation: | (W2) ← (A) | Grouping:
Description | | the conten | s of register A to timer | | Operation: | (W2) ← (A) | | : Transfers | the conten | s of register A to timer | | Operation: | (W2) ← (A) | | : Transfers | the conten | s of register A to timer | | Operation: | (W2) ← (A) | | : Transfers | the conten | s of register A to timer | | Operation: | (W2) ← (A) | | : Transfers | the conten | s of register A to time | | | | | : Transfers | the conten | s of register A to timer | | TW3A (Tra | nsfer data to register W3 from Accumulator) | Description | control reg | the conten
jister W2. | | | TW3A (Tra | Insfer data to register W3 from Accumulator) | | : Transfers | the conten | s of register A to timer | | TW3A (Tra | nsfer data to register W3 from Accumulator) | Description Number of | control reg | the conten
jister W2. | Skip condition | | TW3A (Tra | Insfer data to register W3 from Accumulator) D9 D0 | Number of words | control reg | the content
pister W2. | Skip condition | | TW3A (Tra | Insfer data to register W3 from Accumulator) D9 D0 | Number of words 1 Grouping: | Number of cycles 1 Timer open | Flag CY ration | Skip condition | | TW3A (Tra | nsfer data to register W3 from Accumulator) D9 D0 1 0 0 0 1 0 0 0 0 0 2 2 1 0 16 | Number of words 1 Grouping: | Number of cycles 1 Timer ope | Flag CY ration the content | Skip condition | | TW3A (Tra | nsfer data to register W3 from Accumulator) D9 D0 1 0 0 0 1 0 0 0 0 0 2 2 1 0 16 | Number of words 1
Grouping: | Number of cycles 1 Timer open | Flag CY ration the content | Skip condition | | TW3A (Tra | nsfer data to register W3 from Accumulator) D9 D0 1 0 0 0 1 0 0 0 0 0 2 2 1 0 16 | Number of words 1 Grouping: | Number of cycles 1 Timer ope | Flag CY ration the content | Skip condition | | TW3A (Tra | nsfer data to register W3 from Accumulator) D9 D0 1 0 0 0 1 0 0 0 0 0 2 2 1 0 16 | Number of words 1 Grouping: | Number of cycles 1 Timer ope | Flag CY ration the content | Skip condition | | TW3A (Tra | nsfer data to register W3 from Accumulator) D9 D0 1 0 0 0 1 0 0 0 0 0 2 2 1 0 16 | Number of words 1 Grouping: | Number of cycles 1 Timer ope | Flag CY ration the content | Skip condition | # MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued) | TW4A (Tra | nsfer data to register W4 from Accumulator) | | | | | |---------------|--|--------------|--------------|-------------|---------------------------| | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | 1 0 0 0 0 1 0 0 0 1 2 2 1 1 1 16 | words | cycles | | | | | | 1 | 1 | _ | _ | | Operation: | (W4) ← (A) | Grouping: | Timer ope | ration | | | - | | Description | | | ts of register A to tim | | | | | control reg | gister W4. | TW5A (Tra | nsfer data to register W5 from Accumulator) | | | | | | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | 1 0 0 0 0 1 0 0 1 0 2 2 1 2 16 | words | cycles | | | | | 10 | 1 | 1 | _ | _ | | Operation: | (W5) ← (A) | Grouping: | Timer ope | ration | | | орегиноп. | (****) | | | | ts of register A to time | | | | 2000 iptioi | control reg | | to or regional 7t to time | | | | | 001111011109 | , | TW6A (Tra | nsfer data to register W6 from Accumulator) | | | | | | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | 1 0 0 0 0 1 0 0 1 1 2 2 1 3 | words | cycles | | • | | | 16 | 1 | 1 | _ | - | | On a notice : | (14/0) (4) | One continue | T: | | | | Operation: | (W6) ← (A) | Grouping: | Timer oper | | to of register A to time | | | | Description | control reg | | ts of register A to time | | | | | control reg | jistei vvo. | TVA /Trans | for data to register V from Appumulator) | | | | | | I TA (Trans | sfer data to register Y from Accumulator) D9 D0 | Number of | Number of | Flag CY | Skip condition | | code | | words | cycles | Flag C1 | Skib condition | | code | 0 0 0 0 0 0 1 1 0 0 ₂ 0 0 C ₁₆ | 1 | 1 | _ | _ | | | | ' | ' | | | | Operation: | (Y) ← (A) | Grouping: | Register to | register tr | ransfer | | | | Description | | | ts of register A to regi | | | | | ter Y. | # MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued) | WRST (Wa | atchdog timer ReSeT) | | | | | | | | | | |------------------|---|--|------------------|--------------|--|--|--|--|--|--| | Instruction code | D9 D0 | Number of words | Number of cycles | Flag CY | Skip condition | | | | | | | code | 1 0 1 0 1 0 0 0 0 0 0 ₂ 2 A 0 ₁₆ | 1 | 1 | _ | (WDF1) = 1 | | | | | | | Operation: | (WDF1) = 1 ? | Grouping: | Other oper | ration | | | | | | | | | After skipping, (WDF1) ← 0 | Description: Skips the next instruction when watchdog | | | | | | | | | | | | | timer flag \ | NDF1 is "1 | I." After skipping, clears | | | | | | | | | | (0) to the | WDF1 flag | g. When the WDF1 flag | | | | | | | | | | is "0," exe | cutes the | next instruction. Also | | | | | | | | | | | _ | timer function when ex- | | | | | | | | | | _ | | nstruction immediately | | | | | | | | | | after the D | WD1 instr | uction. | | | | | | | XAM j (eX | change Accumulator and Memory data) | | | | | | | | | | | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | | | | | | code | 1 0 1 1 0 1 j j j ₂ 2 D j ₁₆ | words | cycles | | | | | | | | | | | 1 | 1 | _ | _ | | | | | | | Operation: | $(A) \longleftrightarrow (M(DP))$ | Grouping: | RAM to re | dister trans | sfer | | | | | | | • | $(X) \leftarrow (X) EXOR(j)$ | | | | ne contents of M(DP) | | | | | | | | j = 0 to 15 | | | | register A, an exclusive | | | | | | | | | | OR operat | tion is per | formed between regis- | | | | | | | | | | ter X and t | he value j | in the immediate field, | | | | | | | | | | and stores | the result | in register X. | XAMD j (e | Xchange Accumulator and Memory data and Decre | ment regist | er Y and sk | (ip) | | | | | | | | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | | | | | | code | 1 0 1 1 1 1 j j j j ₂ 2 F j ₁₆ | words | cycles | | | | | | | | | | | 1 | 1 | _ | (Y) = 15 | | | | | | | Operation: | $(A) \longleftrightarrow (M(DP))$ | Grouping: | RAM to reg | | | | | | | | | Operation. | $(X) \leftarrow (M(DY))$
$(X) \leftarrow (X)EXOR(j)$ | Description | | | ne contents of M(DP) register A, an exclusive | | | | | | | | j = 0 to 15 | | | | formed between regis- | | | | | | | | $(Y) \leftarrow (Y) - 1$ | | | | in the immediate field, | | | | | | | | | | | | in register X. contents of register Y. | | | | | | | | | | | | action, when the con- | | | | | | | | | | | | 15, the next instruction | | | | | | | | | | | | e contents of register Y struction is executed. | | | | | | | XAMI j (eX | change Accumulator and Memory data and Increm | ent register | | | | | | | | | | Instruction | D9 D0 | Number of | Number of | Flag CY | Skip condition | | | | | | | code | 1 0 1 1 1 0 j j j j ₂ 2 E j ₁₆ | words | cycles | | | | | | | | | | 19 | 1 | 1 | _ | (Y) = 0 | | | | | | | Operation: | $(A) \longleftrightarrow (M(DP))$ | Grouping: | RAM to re | gister trans | sfer | | | | | | | Operation. | $(X) \leftarrow (M(DF))$
$(X) \leftarrow (X)EXOR(j)$ | Description | : After excl | nanging th | ne contents of M(DP) | | | | | | | | j = 0 to 15 | | | | register A, an exclusive formed between regis- | | | | | | | | $(Y) \leftarrow (Y) + 1$ | OR operation is performed between regis-
ter X and the value j in the immediate field
and stores the result in register X. | ts of register Y. As a re-
rhen the contents of | | | | | | | | | | register \ | / is 0, th | e next instruction is | | | | | | | | | | | | ontents of register Y is | | | | | | | | | | skipped. w | hen the c | | | | | | | # MACHINE INSTRUCTIONS (INDEX BY TYPES) | Parameter | | | | | | In | stru | ruction code | | er of | er of | _ | | | | | | |-------------------------------|----------|----|----|----|----|----|------------|--------------|----|-------|----------------|---|--------------|---------|-----------------|---------------|---| | Type of instructions | Mnemonic | D9 | D8 | D7 | D6 | D5 | D4 | Dз | D2 | D1 | D ₀ | | ade
otati | | Number of words | Number cycles | Function | | | ТАВ | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | E | 1 | 1 | $(A) \leftarrow (B)$ | | | ТВА | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | E | 1 | 1 | $(B) \leftarrow (A)$ | | | TAY | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | F | 1 | 1 | $(A) \leftarrow (Y)$ | | _ | TYA | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | С | 1 | 1 | $(Y) \leftarrow (A)$ | | Register to register transfer | TEAB | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | Α | 1 | 1 | $ \begin{array}{l} (E7\text{-}E4) \leftarrow (B) \\ (E3\text{-}E0) \leftarrow (A) \end{array} $ | | egister | TABE | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 2 | Α | 1 | 1 | $ \begin{array}{l} (B) \leftarrow (E7 - E4) \\ (A) \leftarrow (E3 - E0) \end{array} $ | | er to r | TDA | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 2 | 9 | 1 | 1 | $(DR2-DR0) \leftarrow (A2-A0)$ | | Registe | TAD | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 5 | 1 | 1 | 1 | $ \begin{array}{l} (A2\text{-}A0) \leftarrow (DR2\text{-}DR0) \\ (A3) \leftarrow 0 \end{array} $ | | | TAZ | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 5 | 3 | 1 | 1 | $(A_1, A_0) \leftarrow (Z_1, Z_0)$
$(A_3, A_2) \leftarrow 0$ | | | TAX | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 5 | 2 | 1 | 1 | $(A) \leftarrow (X)$ | | | TASP | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 1 | 1 | $ \begin{array}{l} (A2\text{-}A0) \leftarrow (SP2\text{-}SP0) \\ (A3) \leftarrow 0 \end{array} $ | | | LXY x, y | 1 | 1 | Х3 | X2 | X1 | X 0 | уз | у2 | y1 | у0 | 3 | Х | у | 1 | 1 | $(X) \leftarrow x \ x = 0 \text{ to } 15$
$(Y) \leftarrow y \ y = 0 \text{ to } 15$ | | resses | LZ z | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | Z1 | Z0 | 0 | 4 | 8
+z | 1 | 1 | $(Z) \leftarrow z z = 0 \text{ to } 3$ | | RAM addresses | INY | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 3 | 1 | 1 | (Y) ← (Y) + 1 | | <u> </u> | DEY | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 7 | 1 | 1 | (Y) ← (Y) − 1 | | | ТАМ ј | 1 | 0 | 1 | 1 | 0 | 0 | j | j | j | j | 2 | С | j | 1 | 1 | $ \begin{array}{l} (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array} $ | | | XAM j | 1 | 0 | 1 | 1 | 0 | 1 | j | j | j | j | 2 | D | j | 1 | 1 | $ \begin{array}{l} \text{(A)} \leftarrow \rightarrow \text{(M(DP))} \\ \text{(X)} \leftarrow \text{(X)EXOR(j)} \\ \text{j} = 0 \text{ to } 15 \end{array} $ | | RAM to register transfer | XAMD j | 1 | 0 | 1 | 1 | 1 | 1 | j | j | j | j | 2 | F | j | 1 | 1 | $ \begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) - 1 \end{array}
$ | | RAM to re | XAMI j | 1 | 0 | 1 | 1 | 1 | 0 | j | j | j | j | 2 | Ε | j | 1 | 1 | $ \begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) + 1 \end{array} $ | | | ТМА ј | 1 | 0 | 1 | 0 | 1 | 1 | j | j | j | j | 2 | В | j | 1 | 1 | $(M(DP)) \leftarrow (A)$
$(X) \leftarrow (X)EXOR(j)$
j = 0 to 15 | | | > | | |---------------------------|---------------|--| | Skip condition | Carry flag CY | Datailed description | | _ | _ | Transfers the contents of register B to register A. | | _ | _ | Transfers the contents of register A to register B. | | _ | _ | Transfers the contents of register Y to register A. | | _ | _ | Transfers the contents of register A to register Y. | | - | _ | Transfers the contents of register B to the high-order 4 bits (E7–E4) of register E, and the contents of register A to the low-order 4 bits (E3–E0) of register E. | | - | _ | Transfers the high-order 4 bits (E7–E4) of register E to register B, and low-order 4 bits (E3–E0) of register E to register A. | | _ | _ | Transfers the contents of the low-order 3 bits (A2-A0) of register A to register D. | | _ | _ | Transfers the contents of register D to the low-order 3 bits (A2-A0) of register A. | | _ | _ | Transfers the contents of register Z to the low-order 2 bits (A1, A0) of register A. | | _ | _ | Transfers the contents of register X to register A. | | _ | _ | Transfers the contents of stack pointer (SP) to the low-order 3 bits (A2–A0) of register A. | | Continuous
description | _ | Loads the value x in the immediate field to register X, and the value y in the immediate field to register Y. When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped. | | _ | _ | Loads the value z in the immediate field to register Z. | | (Y) = 0 | _ | Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped. When the contents of register Y is not 0, the next instruction is executed. | | (Y) = 15 | _ | Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed. | | - | _ | After transferring the contents of M(DP) to register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. | | - | _ | After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. | | (Y) = 15 | _ | After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed. | | (Y) = 0 | _ | After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped. When the contents of register Y is not 0, the next instruction is executed. | | _ | _ | After transferring the contents of register A to M(DP), an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. | | | | | # MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued) | Parameter | | | | | | In | stru | ction | cod | e | | 20) (0011 | JC | ir of | | |----------------------|-----------------|----|----|----|----|----|------|--------|--------|--------|----------------|----------------------|-----------------|------------------|--| | Type of instructions | Mnemonic | D9 | D8 | D7 | D6 | D5 | D4 | Dз | D2 | D1 | D ₀ | Hexadecimal notation | Number of words | Number of cycles | Function | | | LA n | 0 | 0 | 0 | 1 | 1 | 1 | n | n | n | n | 0 7 n | 1 | | (A) ← n
n = 0 to 15 | | | ТАВР р | 0 | 0 | 1 | 0 | p5 | p4 | р3 | p2 | p1 | po | 0 8 p
+p | 1 | | $(SP) \leftarrow (SP) + 1$
$(SK(SP)) \leftarrow (PC)$
$(PCH) \leftarrow p (Note)$
$(PCL) \leftarrow (DR2-DR0, A3-A0)$
$(B) \leftarrow (ROM(PC))7-4$
$(A) \leftarrow (ROM(PC))3-0$
$(PC) \leftarrow (SK(SP))$
$(SP) \leftarrow (SP) - 1$ | | | AM | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 0 A | 1 | 1 | $(A) \leftarrow (A) + (M(DP))$ | | ration | AMC | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 0 B | 1 | 1 | $(A) \leftarrow (A) + (M(DP)) + (CY)$
$(CY) \leftarrow Carry$ | | Arithmetic operation | A n | 0 | 0 | 0 | 1 | 1 | 0 | n | n | n | n | 0 6 n | 1 | | (A) ← (A) + n
n = 0 to 15 | | Arit | AND | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 1 8 | 1 | 1 | $(A) \leftarrow (A) \text{ AND } (M(DP))$ | | | OR | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 1 9 | 1 | 1 | $(A) \leftarrow (A) \ OR \ (M(DP))$ | | | sc | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 0 7 | 1 | 1 | (CY) ← 1 | | | RC | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 0 6 | 1 | 1 | (CY) ← 0 | | | szc | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 2 F | 1 | 1 | (CY) = 0 ? | | | СМА | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 1 C | 1 | 1 | $(A) \leftarrow (\overline{A})$ | | | RAR | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 1 D | 1 | 1 | CY A3A2A1A0 | | | SB j | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | j | j | 0 5 C
+j | 1 | | (Mj(DP)) ← 1
j = 0 to 3 | | Bit operation | RB j | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | j | j | 0 4 C
+j | 1 | | $(Mj(DP)) \leftarrow 0$
j = 0 to 3 | | Bit op | SZB j | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | j | j | 0 2 j | 1 | 1 | (Mj(DP)) = 0?
j = 0 to 3 | | 1 | SEAM | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 2 6 | 1 | 1 | (A) = (M(DP)) ? | | Comparison operation | SEA n | 0 | 0 | 0 | 0 | 1 | 0 | 0
n | 1
n | 0
n | 1
n | 0 2 5
0 7 n | 2 | 2 | (A) = n ?
n = 0 to 15 | | | 0 to 63 for M34 | | | | | | | • | | | | | | | | Note: p is 0 to 63 for M34554M8, p is 0 to 95 for M34554MC and p is 0 to 127 for M34554ED. | Skip condition | Carry flag CY | Datailed description | |------------------------------|---------------|--| | Continuous
description | _ | Loads the value n in the immediate field to register A. When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped. | | - | _ | Transfers bits 7 to 4 to register B and bits 3 to 0 to register A. These bits 7 to 0 are the ROM pattern in address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers A and D in page p. When this instruction is executed, be careful not to over the stack because 1 stage of stack register is used. The pages which can be referred as follows; after the SBK instruction: 64 to 127 after the RBK instruction: 0 to 63 after system is released from reset or returned from power down: 0 to 63. | | - | _ | Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY remains unchanged. | | - | 0/1 | Adds the contents of M(DP) and carry flag CY to register A. Stores the result in register A and carry flag CY. | | Overflow = 0 | _ | Adds the value n in the immediate field to register A, and stores a result in register A. The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation. Executes the next instruction when there is overflow as the result of operation. | | _ | - | Takes the AND operation between the contents of register A and the contents of M(DP), and stores the result in register A. | | _ | - | Takes the OR operation between the contents of register A and the contents of M(DP), and stores the result in register A. | | _ | 1 | Sets (1) to carry flag CY. | | - | 0 | Clears (0) to carry flag CY. | | (CY) = 0 | _ | Skips the next instruction when the contents of carry flag CY is "0." | | _ | _ | Stores the one's complement for register A's contents in register A. | | _ | 0/1 | Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right. | | - | - | Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of M(DP). | | _ | _ | Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP). | | (Mj(DP)) = 0
j = 0 to 3 | _ | Skips the next
instruction when the contents of bit j (bit specified by the value j in the immediate field) of M(DP) is "0." Executes the next instruction when the contents of bit j of M(DP) is "1." | | (A) = (M(DP)) | - | Skips the next instruction when the contents of register A is equal to the contents of M(DP). Executes the next instruction when the contents of register A is not equal to the contents of M(DP). | | (A) = n | _ | Skips the next instruction when the contents of register A is equal to the value n in the immediate field. Executes the next instruction when the contents of register A is not equal to the value n in the immediate field. | # **MACHINE INSTRUCTIONS (continued)** Note: p is 0 to 63 for M34554M8, p is 0 to 95 for M34554MC and p is 0 to 127 for M34554ED. | | C | | |---------------------|--------------|---| | Skip condition | Carry flag C | Datailed description | | - | - | Branch within a page : Branches to address a in the identical page. | | - | | Branch out of a page : Branches to address a in page p. | | - | _ | Branch out of a page: Branches to address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p. | | - | _ | Call the subroutine in page 2 : Calls the subroutine at address a in page 2. | | - | _ | Call the subroutine : Calls the subroutine at address a in page p. | | - | _ | Call the subroutine: Calls the subroutine at address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p. | | - | - | Returns from interrupt service routine to main routine. Returns each value of data pointer (X, Y, Z), carry flag, skip status, NOP mode status by the continuous de- | | _ | _ | scription of the LA/LXY instruction, register A and register B to the states just before interrupt. Returns from subroutine to the routine called the subroutine. | | Skip at uncondition | - | Returns from subroutine to the routine called the subroutine, and skips the next instruction at uncondition. | # MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued) | Parameter | INE INS | | | | | | | ction | | | ••• | -0, | | | JC | _ | | |----------------------|----------|----|----|----|----|----|----|-------|----|----|----------------|-----|-----|-------------|----------|--------------|--| | Type of instructions | Mnemonic | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D ₀ | | ade | cimal
on | Number o | Number o | Function | | , | DI | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | | 0 | | 1 | 1 | (INTE) ← 0 | | | EI | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 5 | 1 | 1 | (INTE) ← 1 | | | SNZ0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 3 | 8 | 1 | 1 | V10 = 0: (EXF0) = 1 ?
After skipping, (EXF0) ← 0
V10 = 1: SNZ0 = NOP | | | SNZ1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 3 | 9 | 1 | 1 | V11 = 0: (EXF1) = 1 ?
After skipping, (EXF1) ← 0
V11 = 1: SNZ1 = NOP | | | SNZI0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 3 | Α | 1 | 1 | I12 = 1 : (INT0) = "H" ? | | ion | | | | | | | | | | | | | | | | | l12 = 0 : (INT0) = "L" ? | | Interrupt operation | SNZI1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 3 | В | 1 | 1 | I22 = 1 : (INT1) = "H" ? | | Interru | | | | | | | | | | | | | | | | | I22 = 0 : (INT1) = "L" ? | | | TAV1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 5 | 4 | 1 | 1 | (A) ← (V1) | | | TV1A | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 3 | F | 1 | 1 | (V1) ← (A) | | | TAV2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 5 | 5 | 1 | 1 | (A) ← (V2) | | | TV2A | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 3 | Е | 1 | 1 | (V2) ← (A) | | | TAI1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 2 | 5 | 3 | 1 | 1 | $(A) \leftarrow (I1)$ | | | TI1A | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 2 | 1 | 7 | 1 | 1 | (I1) ← (A) | | | TAI2 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 2 | 5 | 4 | 1 | 1 | (A) ← (I2) | | | TI2A | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 2 | 1 | 8 | 1 | 1 | $(12) \leftarrow (A)$ | | | TPAA | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 2 | Α | Α | 1 | 1 | (PAo) ← (Ao) | | | TAW1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 2 | 4 | В | 1 | 1 | (A) ← (W1) | | | TW1A | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 2 | 0 | Е | 1 | 1 | (W1) ← (A) | | | TAW2 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 4 | С | 1 | 1 | (A) ← (W2) | | _ c | TW2A | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 0 | F | 1 | 1 | (W2) ← (A) | | Timer operation | TAW3 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 2 | 4 | D | 1 | 1 | (A) ← (W3) | | er ope | TW3A | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 1 | 1 | (W3) ← (A) | | Time | TAW4 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 2 | 4 | Е | 1 | 1 | (A) ← (W4) | | | TW4A | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 2 | 1 | 1 | 1 | 1 | (W4) ← (A) | | | TAW5 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 4 | F | 1 | 1 | (A) ← (W5) | | | TW5A | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 2 | 1 | 2 | 1 | 1 | (W5) ← (A) | Skip condition | Carry flag CY | Datailed description | |----------------------------------|---------------|---| | _ | _ | Clears (0) to interrupt enable flag INTE, and disables the interrupt. | | _ | _ | Sets (1) to interrupt enable flag INTE, and enables the interrupt. | | V10 = 0: (EXF0) = 1 | - | When V10 = 0 : Skips the next instruction when external 0 interrupt request flag EXF0 is "1." After skipping, clears (0) to the EXF0 flag. When the EXF0 flag is "0," executes the next instruction. When V10 = 1 : This instruction is equivalent to the NOP instruction. (V10: bit 0 of interrupt control register V1) | | V11 = 0: (EXF1) = 1 | _ | When V11 = 0 : Skips the next instruction when external 1 interrupt request flag EXF1 is "1." After skipping, clears (0) to the EXF1 flag. When the EXF1 flag is "0," executes the next instruction. When V11 = 1 : This instruction is equivalent to the NOP instruction. (V11: bit 1 of interrupt control register V1) | | (INT0) = "H"
However, I12 = 1 | _ | When I12 = 1 : Skips the next instruction when the level of INT0 pin is "H." (I12: bit 2 of interrupt control register I1) | | (INT0) = "L"
However, I12 = 0 | - | When I12 = 0 : Skips the next instruction when the level of INT0 pin is "L." | | (INT1) = "H"
However, I22 = 1 | _ | When I22 = 1 : Skips the next instruction when the level of INT1 pin is "H." (I22: bit 2 of interrupt control register I2) | | (INT1) = "L"
However, I22 = 0 | _ | When I22 = 0 : Skips the next instruction when the level of INT1 pin is "L." | | _ | _ | Transfers the contents of interrupt control register V1 to register A. | | _ | - | Transfers the contents of register A to interrupt control register V1. | | _ | - | Transfers the contents of interrupt control register V2 to register A. | | _ | _ | Transfers the contents of register A to interrupt control register V2. | | _ | _ | Transfers the contents of interrupt control register I1 to register A. | | _ | _ | Transfers the contents of register A to interrupt control register I1. | | _ | _ | Transfers the contents of interrupt control register I2 to register A. | | _ | _ | Transfers the contents of register A to interrupt control register I2. | | _ | - | Transfers the contents of register A to timer control register PA. | | _ | _ | Transfers the contents of timer control register W1 to register A. | | _ | _ | Transfers the contents of register A to timer control register W1. | | _ | _ | Transfers the contents of timer control register W2 to register A. | | _ | _ | Transfers the contents of register A to timer control register W2. | | _ | - | Transfers the contents of timer control register W3 to register A. | | _ | _ | Transfers the contents of register A to timer control register W3. | | _ | _ | Transfers the contents of timer control register W4 to register A. | | _ | _ | Transfers the contents of register A to timer control register W4. | | _ | _ | Transfers the contents of timer control register W5 to register A. | | _ | - | Transfers the contents of register A to timer control register W5. | | | | | | | | I . | | Parameter | | | | | | In | stru | ction | cod | e | | | | | er of | er of | | |----------------------|----------|----|----|----|----|----|------|-------|-----|----|----------------|---|--------------|--------------|----------|--------------------|--| | Type of instructions | Mnemonic | D9 | D8 | D7 | D6 | D5 | D4 | Dз | D2 | D1 | D ₀ | | ade
otati | cimal
ion | Number o | Number c
cycles | Function | | | TAW6 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 5 | 0 | 1 | 1 | (A) ← (W6) | | | TW6A | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 2 | 1 | 3 | 1 | 1 | (W6) ← (A) | | | TABPS | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 2 | 7 | 5 | 1 | 1 | $ \begin{array}{l} (B) \leftarrow (TPS7\text{-}TPS4) \\ (A) \leftarrow (TPS3\text{-}TPS0) \end{array} $ | | | TPSAB | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 2 | 3 | 5 | 1 | 1 | $ \begin{aligned} &(RPS7\text{-}RPS4) \leftarrow (B) \\ &(TPS7\text{-}TPS4) \leftarrow (B) \\ &(RPS3\text{-}RPS0) \leftarrow (A) \\ &(TPS3\text{-}TPS0) \leftarrow (A) \end{aligned} $ | | | TAB1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 7 | 0 | 1 | 1 | (B) ← (T17–T14)
(A) ← (T13–T10) | | | T1AB | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 3 | 0 | 1 | 1 | $(R17-R14) \leftarrow (B)$
$(T17-T14) \leftarrow (B)$
$(R13-R10) \leftarrow
(A)$
$(T13-T10) \leftarrow (A)$ | | | TAB2 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 2 | 7 | 1 | 1 | 1 | (B) ← (T27–T24)
(A) ← (T23–T20) | | | T2AB | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 2 | 3 | 1 | 1 | 1 | $(R27-R24) \leftarrow (B)$
$(T27-T24) \leftarrow (B)$
$(R23-R20) \leftarrow (A)$
$(T23-T20) \leftarrow (A)$ | | ation | TAB3 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 2 | 7 | 2 | 1 | 1 | (B) ← (T37–T34)
(A) ← (T33–T30) | | Timer operation | ТЗАВ | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 2 | 3 | 2 | 1 | 1 | (R37-R34) ← (B)
(T37-T34) ← (B)
(R33-R30) ← (A)
(T33-T30) ← (A) | | | TAB4 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 2 | 7 | 3 | 1 | 1 | (B) ← (T47–T44)
(A) ← (T43–T40) | | | T4AB | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 2 | 3 | 3 | 1 | 1 | $(R4L7-R4L4) \leftarrow (B)$
$(T47-T44) \leftarrow (B)$
$(R4L3-R4L0) \leftarrow (A)$
$(T43-T40) \leftarrow (A)$ | | | Т4НАВ | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 2 | 3 | 7 | 1 | 1 | (R4H7–R4H4) ← (B)
(R4H3–R4H0) ← (A) | | | TR1AB | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | F | 1 | 1 | (R17-R14) ← (B)
(R13-R10) ← (A) | | | TR3AB | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 2 | 3 | В | 1 | 1 | (R37–R34) ← (B)
(R33–R30) ← (A) | | | T4R4L | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 2 | 9 | 7 | 1 | 1 | (T47–T40) ← (R4L7–R4L0) | | | TLCA | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 2 | 0 | D | 1 | 1 | $(LC) \leftarrow (A)$
$(RLC) \leftarrow (A)$ | Skip condition | Carry flag CY | Datailed description | |----------------|---------------|--| | _ | _ | Transfers the contents of timer control register W6 to register A. | | _ | _ | Transfers the contents of register A to timer control register W6. | | _ | _ | Transfers the high-order 4 bits of prescaler to register B, and transfers the low-order 4 bits of prescaler to register A. | | - | _ | Transfers the contents of register B to the high-order 4 bits of prescaler and prescaler reload register RPS, and transfers the contents of register A to the low-order 4 bits of prescaler and prescaler reload register RPS. | | _ | _ | Transfers the high-order 4 bits of timer 1 to register B, and transfers the low-order 4 bits of timer 1 to register A. | | - | _ | Transfers the contents of register B to the high-order 4 bits of timer 1 and timer 1 reload register R1, and transfers the contents of register A to the low-order 4 bits of timer 1 and timer 1 reload register R1. | | _ | _ | Transfers the high-order 4 bits of timer 2 to register B, and transfers the low-order 4 bits of timer 2 to register A. | | _ | _ | Transfers the contents of register B to the high-order 4 bits of timer 2 and timer 2 reload register R2, and transfers the contents of register A to the low-order 4 bits of timer 2 and timer 2 reload register R2. | | - | _ | Transfers the high-order 4 bits of timer 3 to register B, and transfers the low-order 4 bits of timer 3 to register A. | | - | _ | Transfers the contents of register B to the high-order 4 bits of timer 3 and timer 3 reload register R3, and transfers the contents of register A to the low-order 4 bits of timer 3 and timer 3 reload register R3. | | - | _ | Transfers the high-order 4 bits of timer 4 to register B, and transfers the low-order 4 bits of timer 4 to register A. | | - | _ | Transfers the contents of register B to the high-order 4 bits of timer 4 and timer 4 reload register R4L, and transfers the contents of register A to the low-order 4 bits of timer 4 and timer 4 reload register R4L. | | _ | _ | Transfers the contents of register B to the high-order 4 bits of timer 4 reload register R4H, and transfers the contents of register A to the low-order 4 bits of timer 4 reload register R4H. | | _ | - | Transfers the contents of register B to the high-order 4 bits of timer 1 reload register R1, and transfers the contents of register A to the low-order 4 bits of timer 1 reload register R1. | | _ | _ | Transfers the contents of register B to the high-order 4 bits of timer 3 reload register R3, and transfers the contents of register A to the low-order 4 bits of timer 3 reload register R3. | | _ | - | Transfers the contents of timer 4 reload register R4L to timer 4. | | _ | _ | Transfers the contents of register A to timer LC and timer LC reload register RLC. | | | | | | | | | | Parameter | | | | | | In | stru | ction | cod | e | | | | | r of | r of
s | | |------------------------|----------|----|----|----|----|----|------|-------|-----|----|----------------|---|-------------|--------------|--------------|---------------|--| | Type of instructions | Mnemonic | D9 | D8 | D7 | D6 | D5 | D4 | Dз | D2 | D1 | D ₀ | | ade
otat | cimal
ion | Number words | Number cycles | Function | | | SNZT1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 8 | 0 | 1 | 1 | V12 = 0: (T1F) = 1 ?
After skipping, (T1F) ← 0 V12 = 1: NOP | | tion | SNZT2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 8 | 1 | 1 | 1 | V13 = 0: (T2F) = 1 ?
After skipping, (T2F) ← 0 V13 = 1: NOP | | Timer operation | SNZT3 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 8 | 2 | 1 | 1 | V20 = 0: (T3F) = 1 ?
After skipping, (T3F) \leftarrow 0 $V20 = 1$: NOP | | Time | SNZT4 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 8 | 3 | 1 | 1 | V23 = 0: (T4F) = 1 ?
After skipping, (T4F) \leftarrow 0 V23 = 1: NOP | | | SNZT5 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 8 | 4 | 1 | 1 | V21 = 0: (T5F) = 1 ?
After skipping, (T5F) \leftarrow 0 V21 = 1: NOP | | | IAP0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 6 | 0 | 1 | 1 | (A) ← (P0) | | | OP0A | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 1 | 1 | (P0) ← (A) | | | IAP1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 2 | 6 | 1 | 1 | 1 | (A) ← (P1) | | | OP1A | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 2 | 2 | 1 | 1 | 1 | (P1) ← (A) | | | IAP2 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 2 | 6 | 2 | 1 | 1 | (A) ← (P2) | | | IAP3 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 2 | 6 | 3 | 1 | 1 | (A) ← (P3) | | | CLD | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | (D) ← 1 | | | RD | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 4 | 1 | 1 | $(D(Y)) \leftarrow 0$
(Y) = 0 to 9 | | | SD | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 5 | 1 | 1 | $(D(Y)) \leftarrow 1$
(Y) = 0 to 9 | | tion | SZD | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 4 | 1 | 1 | (D(Y)) = 0?
(Y) = 0 to 7 | | pera | | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 2 | В | 1 | 1 | $(\tau) = 0$ to τ | | Input/Output operation | RCP | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 8 | С | 1 | 1 | (C) ← 0 | | no/tr | SCP | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 2 | 8 | D | 1 | 1 | (C) ← 1 | | ldul | TAPU0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 2 | 5 | 7 | 1 | 1 | (A) ← (PU0) | | | TPU0A | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 2 | 2 | D | 1 | 1 | (PU0) ← (A) | | | TAPU1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 2 | 5 | Ε | 1 | 1 | (A) ← (PU1) | | | TPU1A | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 2 | 2 | Ε | 1 | 1 | (PU1) ← (A) | Skip condition | Carry flag CY | Datailed description | |-----------------------------------|---------------|--| | V12 = 0: (T1F) = 1 | _ | Skips the next instruction when the contents of bit 2 (V12) of interrupt control register V1 is "0" and the contents of T1F flag is "1." After skipping, clears (0) to T1F flag. | | V13 = 0: (T2F) =1 | _ | Skips the next instruction when the contents of bit 3 (V13) of interrupt control register V1 is "0" and the contents of T2F flag is "1." After skipping, clears (0) to T2F flag. | | V20 = 0: (T3F) = 1 | _ | Skips the next instruction when the contents of bit 0 (V2o) of interrupt control register V2 is "0" and the contents of T3F flag is "1." After skipping, clears (0) to T3F flag. | | V23 = 0: (T4F) =1 | _ | Skips the next instruction when the contents of bit 3 (V23) of interrupt control register V2 is "0" and the contents of T4F flag is "1." After skipping, clears (0) to T4F flag. | | V21 = 0: (T5F) =1 | _ | Skips the next instruction when the contents of bit 1 (V21) of interrupt control register V2 is "0" and the contents of T5F flag is "1." After skipping, clears (0) to T5F flag. | | - | - | Transfers the input of port P0 to register A. | | _ | _ | Outputs the contents of register A to port P0. | | _ | _ | Transfers the input of port P1 to register A. | | _ | _ | Outputs the contents of register A to port P1. | | _ | _ | Transfers the input of port P2 to register A. | | _ | _ | Transfers the input of port P3 to register A. | | _ | _ | Sets (1) to all port D. | | _ | _ | Clears (0) to a bit of port D specified by register Y. | | - | _ | Sets (1) to a bit of port D specified by register Y. | | (D(Y)) = 0
However, (Y)=0 to 7 | _ | Skips the next instruction when a bit of port D specified by register Y is "0." Executes the next instruction when a bit of port D specified by register Y is "1." | | _ | _ | Clears (0) to port C. | | _ | _ | Sets (1) to port C. | | _ | _ | Transfers the contents of pull-up control register PU0 to register A. | | _ | _ | Transfers the contents of register A to pull-up control register PU0. | | _ | _ | Transfers the contents of pull-up control register PU1 to register A. | | _ | _ | Transfers the contents of register A to pull-up control register PU1. | # MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued) | Parameter | | Instruction code | | | | | | , | | | of | r of
s |
δ | | | | | | | | |------------------------|-----------|------------------|----|----|----|----|----|----|----|----|----------------|--------------|---|---|--------------|---------------|--|--|--|--| | Type of instructions | Mnemonic | D9 | D8 | D7 | D6 | D5 | D4 | Dз | D2 | D1 | D ₀ | Hexao
not | | | Number words | Number cycles | Function | | | | | | TAK0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 2 | 5 | 6 | 1 | 1 | (A) ← (K0) | | | | | | TK0A | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 2 | 1 | В | 1 | 1 | (K0) ← (A) | | | | | uo | TAK1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 2 | 5 | 9 | 1 | 1 | (A) ← (K1) | | | | | Input/Output operation | TK1A | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 2 | 1 | 4 | 1 | 1 | (K1) ← (A) | | | | | o tuc | TAK2 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 2 | 5 | Α | 1 | 1 | $(A) \leftarrow (K2)$ | | | | | thO/1 | TK2A | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 1 | 5 | 1 | 1 | $(K2) \leftarrow (A)$ | | | | | Indul | TFR0A | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 2 | 2 | 8 | 1 | 1 | (FR0) ← (A) | | | | | | TFR1A | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 2 | 2 | 9 | 1 | 1 | (FR1) ← (A) | | | | | | TFR2A | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 2 | 2 | Α | 1 | 1 | $(FR2) \leftarrow (A)$ | | | | | Ē | TAL1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 2 | 4 | Α | 1 | 1 | (A) ← (L1) | | | | | LCD operation | TL1A | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 2 | 0 | Α | 1 | 1 | (L1) ← (A) | | | | | Оор | TL2A | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 2 | 0 | В | 1 | 1 | $(L2) \leftarrow (A)$ | | | | | LC C | TL3A | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 0 | С | 1 | 1 | $(L3) \leftarrow (A)$ | | | | | ion | CMCK | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 2 | 9 | Α | 1 | 1 | Ceramic resonator selected | | | | | perat | CRCK | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 2 | 9 | В | 1 | 1 | RC oscillator selected | | | | | Clock operation | TAMR | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 2 | 5 | 2 | 1 | 1 | $(A) \leftarrow (MR)$ | | | | | ဗိ | TMRA | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 2 | 1 | 6 | 1 | 1 | $(MR) \leftarrow (A)$ | | | | | | NOP | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | (PC) ← (PC) + 1 | | | | | | POF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 1 | 1 | Transition to clock operating mode | | | | | | POF2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 8 | 1 | 1 | Transition to RAM back-up mode | | | | | | EPOF | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 5 | В | 1 | 1 | POF, POF2 instructions valid | | | | | | SNZP | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 3 | 1 | 1 | (P) = 1 ? | | | | | Other operation | WRST | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 . | Α | 0 | 1 | 1 | (WDF1) = 1 ?
After skipping, (WDF1) ← 0 | | | | | her op | DWDT | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 2 | 9 | С | 1 | 1 | Stop of watchdog timer function enabled | | | | | ď | RBK* | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 1 | 1 | When TABP p instruction is executed, P6 \leftarrow 0 | | | | | | SBK* | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 4 | 1 | 1 | 1 | When TABP p instruction is executed, P6 \leftarrow 1 | | | | | | SVDE | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 2 | 9 | 3 | 1 | 1 | At power down mode, voltage drop detection circuit valid | | | | | | PIX DDIX) | Note: * (SBK, RBK) cannot be used in the M34554M8. The pages which can be referred by the TABP instruction after the SBK instruction is executed are 64 to 95 in the M34554MC. | Skip condition | Carry flag CY | Datailed description | |----------------|---------------|---| | _ | _ | Transfers the contents of key-on wakeup control register K0 to register A. | | _ | _ | Transfers the contents of register A to key-on wakeup control register K0. | | _ | _ | Transfers the contents of key-on wakeup control register K1 to register A. | | - | _ | Transfers the contents of register A to key-on wakeup control register K1. | | _ | _ | Transfers the contents of key-on wakeup control register K2 to register A. | | _ | _ | Transfers the contents of register A to key-on wakeup control register K2. | | - | _ | Transferts the contents of register A to port output format control register FR0. | | _ | - | Transferts the contents of register A to port output format control register FR1. | | _ | - | Transferts the contents of register A to port output format control register FR2. | | _ | _ | Transfers the contents of LCD control register L1 to register A. | | _ | - | Transfers the contents of register A to LCD control register L1. | | _ | - | Transfers the contents of register A to LCD control register L2. | | _ | _ | Transfers the contents of register A to LCD control register L3. | | _ | - | Selects the ceramic resonator for main clock, stops the ring oscillator (internal oscillator). | | - | _ | Selects the RC oscillation circuit for main clock, stops the ring oscillator (internal oscillator). | | _ | - | Transfers the contents of clock control regiser MR to register A. | | - | - | Transfers the contents of register A to clock control register MR. | | - | - | No operation; Adds 1 to program counter value, and others remain unchanged. | | - | _ | Puts the system in clock operating mode by executing the POF instruction after executing the EPOF instruction. | | _ | _ | Puts the system in RAM back-up state by executing the POF2 instruction after executing the EPOF instruction. | | - | _ | Makes the immediate after POF or POF2 instruction valid by executing the EPOF instruction. | | (P) = 1 | _ | Skips the next instruction when the P flag is "1". After skipping, the P flag remains unchanged. | | (WDF1) = 1 | _ | Skips the next instruction when watchdog timer flag WDF1 is "1." After skipping, clears (0) to the WDF1 flag. Also, stops the watchdog timer function when executing the WRST instruction immediately after the DWDT instruction. | | - | _ | Stops the watchdog timer function by the WRST instruction after executing the DWDT instruction. | | _ | _ | Sets referring data area to pages 0 to 63 when the TABP p instruction is executed. This instruction is valid only for the TABP p instruction. | | _ | _ | Sets referring data area to pages 64 to 127 when the TABP p instruction is executed. This instruction is valid only for the TABP p instruction. | | _ | _ | Validates the voltage drop detection circuit at power down (clock operating mode and RAM back-up mode) when VDCE pin is "H". | | | | | #### **INSTRUCTION CODE TABLE** | IIVOI | NUC | HON | COL | | ADLE | | | | | | | | | | | | | | | |-------|------------------|--------|--------|----------|--------|---------|---------|---------|----------|------------|------------|-------------|-------------|--------|--------|--------|--------|----|------------------| |]/ | D9-D4 | 000000 | 000001 | 000010 | 000011 | 000100 | 000101 | 000110 | 000111 | 001000 | 001001 | 001010 | 001011 | 001100 | 001101 | 001110 | 001111 | | 011000
011111 | | D3-D0 | Hex.
notation | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 0A | 0B | 0C | 0D | 0E | 0F | | 18–1F | | 0000 | 0 | NOP | BLA | SZB
0 | BMLA | RBK** | TASP | A
0 | LA
0 | TABP
0 | TABP
16 | TABP
32* | TABP
48* | BML | BML | BL | BL | ВМ | В | | 0001 | 1 | _ | CLD | SZB
1 | - | SBK** | TAD | A
1 | LA
1 | TABP
1 | TABP
17 | TABP
33* | TABP
49* | BML | BML | BL | BL | ВМ | В | | 0010 | 2 | POF | - | SZB
2 | - | _ | TAX | A
2 | LA
2 | TABP
2 | TABP
18 | TABP
34* | TABP
50* | BML | BML | BL | BL | ВМ | В | | 0011 | 3 | SNZP | INY | SZB
3 | - | _ | TAZ | A
3 | LA
3 | TABP
3 | TABP
19 | TABP
35* | TABP
51* | BML | BML | BL | BL | ВМ | В | | 0100 | 4 | DI | RD | SZD | - | RT | TAV1 | A
4 | LA
4 | TABP
4 | TABP
20 | TABP
36* | TABP
52* | BML | BML | BL | BL | ВМ | В | | 0101 | 5 | EI | SD | SEAn | _ | RTS | TAV2 | A
5 | LA
5 | TABP
5 | TABP
21 | TABP
37* | TABP
53* | BML | BML | BL | BL | ВМ | В | | 0110 | 6 | RC | _ | SEAM | _ | RTI | _ | A
6 | LA
6 | TABP
6 | TABP
22 | TABP
38* | TABP
54* | BML | BML | BL | BL | ВМ | В | | 0111 | 7 | sc | DEY | _ | _ | _ | _ | A
7 | LA
7 | TABP
7 | TABP
23 | TABP
39* | TABP
55* | BML | BML | BL | BL | ВМ | В | | 1000 | 8 | POF2 | AND | _ | SNZ0 | LZ
0 | | A
8 | LA
8 | TABP
8 | TABP
24 | TABP
40* | TABP
56* | BML | BML | BL | BL | ВМ | В | | 1001 | 9 | _ | OR | TDA | SNZ1 | LZ
1 | _ | A
9 | LA
9 | TABP
9 | TABP
25 | TABP
41* | TABP
57* | BML | BML | BL | BL | ВМ | В | | 1010 | Α | AM | TEAB | TABE | SNZI0 | LZ
2 | _ | A
10 | LA
10 | TABP
10 | TABP
26 | TABP
42* | TABP
58* | BML | BML | BL | BL | ВМ | В | | 1011 | В | AMC | - | _ | SNZI1 | LZ
3 | EPOF | A
11 | LA
11 | TABP
11 | TABP
27 | TABP
43* | TABP
59* | BML | BML | BL | BL | ВМ | В | | 1100 | С | TYA | СМА | _ | _ | RB
0 | SB
0 | A
12 | LA
12 | TABP
12 | TABP
28 | TABP
44* | TABP
60* | BML | BML | BL | BL | ВМ | В | | 1101 | D | ı | RAR | _ | - | RB
1 | SB
1 | A
13 | LA
13 | TABP
13 | TABP
29 | TABP
45* | TABP
61* | BML | BML | BL | BL | ВМ | В | | 1110 | Е | ТВА | TAB | _ | TV2A | RB
2 | SB
2 | A
14 | LA
14 | TABP
14 | TABP
30 | TABP
46* | TABP
62* | BML | BML | BL | BL | ВМ | В | | 1111 | F | _ | TAY | SZC | TV1A | RB
3 | SB
3 | A
15 | LA
15 | TABP
15 | TABP
31 | TABP
47* | TABP
63* | BML | BML | BL | BL | ВМ | В | The above table shows the relationship between machine language codes and machine language instructions. D3–D0 show the low-order 4 bits of the machine language code, and D9–D4
show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "–." The codes for the second word of a two-word instruction are described below. | | The | secon | d word | |------|-----|-------|--------| | BL | 1p | paaa | aaaa | | BML | 1p | paaa | aaaa | | BLA | 1p | pp00 | pppp | | BMLA | 1p | pp00 | pppp | | SEA | 00 | 0111 | nnnn | | SZD | 00 | 0010 | 1011 | - ** (SBK and RBK instructions) cannot be used in the M34554M8. - * cannot be used after the SBK instruction is executed in the M34554MC. - A page referred by the TABP instruction can be switched by the SBK and RBK instructions in the M34554MC/ED. - The pages which can be referred by the TABP instruction after the SBK instruction is executed are 64 to 95 in the M34554MC. - The pages which can be referred by the TABP instruction after the SBK instruction is executed are 64 to 127 in the M34554ED. - (Ex. TABP $0 \rightarrow TABP 64$) - The pages which can be referred by the TABP instruction after the RBK instruction is executed are 0 to 63. - When the SBK instruction is not used, the pages which can be referred by the TABP instruction are 0 to 63. ### **INSTRUCTION CODE TABLE (continued)** | | | | - | , | | (COII | | , | | | | | | | | | | | |-------|------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-----------|-----------|-----------|------------|------------|--------| |]/ | 09-D4 | 100000 | 100001 | 100010 | 100011 | 100100 | 100101 | 100110 | 100111 | 101000 | 101001 | 101010 | 101011 | 101100 | 101101 | 101110 | 101111 | 110000 | | D3-D0 | Hex.
notation | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 2A | 2B | 2C | 2D | 2E | 2F | 30–3F | | 0000 | 0 | _ | TW3A | OP0A | T1AB | - | TAW6 | IAP0 | TAB1 | SNZT1 | - | WRST | TMA
0 | TAM
0 | XAM
0 | XAMI
0 | XAMD
0 | LXY | | 0001 | 1 | _ | TW4A | OP1A | T2AB | _ | - | IAP1 | TAB2 | SNZT2 | _ | _ | TMA
1 | TAM
1 | XAM
1 | XAMI
1 | XAMD
1 | LXY | | 0010 | 2 | _ | TW5A | - | ТЗАВ | - | TAMR | IAP2 | TAB3 | SNZT3 | _ | - | TMA
2 | TAM
2 | XAM
2 | XAMI
2 | XAMD
2 | LXY | | 0011 | 3 | _ | TW6A | _ | T4AB | _ | TAI1 | IAP3 | TAB4 | SNZT4 | SVDE | _ | TMA
3 | TAM
3 | XAM
3 | XAMI
3 | XAMD
3 | LXY | | 0100 | 4 | ı | TK1A | _ | _ | _ | TAI2 | _ | - | SNZT5 | _ | - | TMA
4 | TAM
4 | XAM
4 | XAMI
4 | XAMD
4 | LXY | | 0101 | 5 | _ | TK2A | _ | TPSAB | _ | _ | | TABPS | _ | _ | | TMA
5 | TAM
5 | XAM
5 | XAMI
5 | XAMD
5 | LXY | | 0110 | 6 | _ | TMRA | _ | _ | _ | TAK0 | _ | _ | _ | _ | _ | TMA
6 | TAM
6 | XAM
6 | XAMI
6 | XAMD
6 | LXY | | 0111 | 7 | _ | TI1A | _ | T4HAB | - | TAPU0 | _ | _ | _ | T4R4L | _ | TMA
7 | TAM
7 | XAM
7 | XAMI
7 | XAMD
7 | LXY | | 1000 | 8 | Ī | TI2A | TFR0A | | _ | ı | _ | - | _ | _ | - | TMA
8 | TAM
8 | XAM
8 | XAMI
8 | XAMD
8 | LXY | | 1001 | 9 | _ | | TFR1A | | | TAK1 | _ | - | _ | _ | | TMA
9 | TAM
9 | XAM
9 | XAMI
9 | XAMD
9 | LXY | | 1010 | Α | TL1A | _ | TFR2A | | TAL1 | TAK2 | _ | - | _ | смск | TPAA | TMA
10 | TAM
10 | XAM
10 | XAMI
10 | XAMD
10 | LXY | | 1011 | В | TL2A | TK0A | _ | TR3AB | TAW1 | _ | _ | _ | _ | CRCK | _ | TMA
11 | TAM
11 | XAM
11 | XAMI
11 | XAMD
11 | LXY | | 1100 | С | TL3A | _ | _ | _ | TAW2 | _ | _ | _ | RCP | DWDT | _ | TMA
12 | TAM
12 | XAM
12 | XAMI
12 | XAMD
12 | LXY | | 1101 | D | TLCA | _ | TPU0A | _ | TAW3 | _ | _ | - | SCP | _ | _ | TMA
13 | TAM
13 | XAM
13 | XAMI
13 | XAMD
13 | LXY | | 1110 | Е | TW1A | | TPU1A | _ | TAW4 | TAPU1 | _ | _ | _ | _ | _ | TMA
14 | TAM
14 | XAM
14 | XAMI
14 | XAMD
14 | LXY | | 1111 | F | TW2A | _ | _ | TR1AB | TAW5 | _ | _ | _ | _ | - | _ | TMA
15 | TAM
15 | XAM
15 | XAMI
15 | XAMD
15 | LXY | The above table shows the relationship between machine language codes and machine language instructions. D3–D0 show the low-order 4 bits of the machine language code, and D9–D4 show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "–." The codes for the second word of a two-word instruction are described below. | | The | secon | d word | |------|-----|-------|--------| | BL | 1p | paaa | aaaa | | BML | 1p | рааа | aaaa | | BLA | 1р | pp00 | pppp | | BMLA | 1р | pp00 | pppp | | SEA | 00 | 0111 | nnnn | | SZD | 00 | 0010 | 1011 | ## **ABSOLUTE MAXIMUM RAINGS** | Symbol | Parameter | Conditions | Ratings | Unit | |--------|---|-------------------------------------|-----------------|------| | VDD | Supply voltage | | -0.3 to 6.5 | V | | Vı | Input voltage P0, P1, P2, P3, D0-D7, RESET, XIN, XCIN, VDCE | | -0.3 to VDD+0.3 | V | | VI | Input voltage CNTR0, CNTR1, INT0, INT1 | | -0.3 to VDD+0.3 | V | | Vo | Output voltage P0, P1, D0-D9, RESET, CNTR0, CNTR1 | Output transistors in cut-off state | -0.3 to VDD+0.3 | V | | Vo | Output voltage C, Xout, Xcout | | -0.3 to VDD+0.3 | V | | Vo | Output voltage SEG0-SEG31, COM0-COM3 | | -0.3 to VDD+0.3 | V | | Pd | Power dissipation | Ta = 25 °C | 300 | mW | | Topr | Operating temperature range | | -20 to 85 | °C | | Tstg | Storage temperature range | | -40 to 125 | °C | #### **RECOMMENDED OPERATING CONDITIONS 1** (Mask ROM version: Ta = -20 °C to 85 °C, VDD = 2 to 5.5 V, unless otherwise noted) (One Time PROM version: Ta = -20 °C to 85 °C, VDD = 2.5 to 5.5 V, unless otherwise noted) | Symbol | Parameter | Condition | ins | | Limits | | Uni | |-------------|----------------------------------|---|-------------------|---------|---------|------------|---------| | Symbol | i didilietei | Conditio | | Min. | Тур. | Max. | | | Vdd | Supply voltage | Mask ROM version | f(STCK) ≤ 6 MHz | 4 | | 5.5 | V | | | (when ceramic resonator is used) | | f(STCK) ≤ 4.4 MHz | 2.7 | | 5.5 | | | | | | f(STCK) ≤ 2.2 MHz | 2 | | 5.5 | | | | | One Time PROM version | | 4 | | 5.5 | | | | | | f(STCK) ≤ 4.4 MHz | 2.7 | | 5.5 | | | | | | f(STCK) ≤ 2.2 MHz | 2.5 | | 5.5 | | | VDD | Supply voltage | f(STCK) ≤ 4.4 MHz | | 2.7 | | 5.5 | V | | | (when RC oscillation is used) | | | | | | | | VRAM | RAM back-up voltage | at RAM back-up mode | | 1.8 | | | V | | Vss | Supply voltage | | | | 0 | | V | | VLC3 | LCD power supply (Note 1) | Mask ROM version | | 2 | | VDD | V | | | | One Time PROM version | | 2.5 | | VDD |] | | VIH | "H" level input voltage | P0, P1, P2, P3, D0-D7, VI | DCE | 0.8VDD | | VDD | V | | VIH | "H" level input voltage | XIN, XCIN | | 0.7Vdd | | VDD | V | | VIH | "H" level input voltage | RESET | | 0.85Vpd | | VDD | V | | ViH | "H" level input voltage | CNTR0, CNTR1, INT0, IN | T1 | 0.8Vpd | | VDD | V | | VIL | "L" level input voltage | P0, P1, P2, P3, D0-D7, VI | DCE | 0 | | 0.2VDD | V | | VIL | "L" level input voltage | XIN, XCIN | | 0 | | 0.3VDD | V | | VIL | "L" level input voltage | RESET | | 0 | | 0.3VDD | V | | VIL | "L" level input voltage | CNTR0, CNTR1, INT0, IN | 0 | | 0.15VDD | V | | | | "H" level peak output current | P0, P1, D0–D6 | VDD = 5 V | | | -20 | m/ | | " / | | | VDD = 3 V | | | -10 | 1 | | Iон(peak) | "H" level peak output current | D7, C | VDD = 5 V | | | -30 | mA | | ν, | | CNTR0, CNTR1 | VDD = 3 V | | | -15 | 1 | | Iон(avg) | "H" level average output current | P0, P1, D0–D6 | VDD = 5 V | | | -10 | mA | | (), | (Note 2) | | VDD = 3 V | | | -5 | 1 | | Iон(avg) | "H" level average output current | D7, C | VDD = 5 V | | | -20 | mA | | (3) | (Note 2) | CNTR0, CNTR1 | VDD = 3 V | | | -10 | 1 | | IoL(peak) | "L" level peak output current | P0, P1 | VDD = 5 V | | | 24 | m/ | | (1) | | -, | VDD = 3 V | | | 12 | 1 | | IOL(peak) | "L" level peak output current | D0-D6, C | VDD = 5 V | | | 24 | m/ | | - (| | CNTR0, CNTR1 | VDD = 3 V | | | 12 | 1 | | IOL(peak) | "L" level peak output current | RESET | VDD = 5 V | | | 10 | m/ | | .oz(pod.i.) | - love pour output outlon | | VDD = 3 V | | | 4 | 1 | | loi (avu) | "L" level average output current | P0, P1 | VDD = 5 V | | | 12 | m/ | | 102(419) | (Note 2) | | VDD = 3 V | | | 6 | 1 | | loL(avg) | "L" level average output current | D0-D6, C | VDD = 5 V | | | 15 | m/ | | iot(avg) | (Note 2) | CNTR0, CNTR1 | VDD = 3 V | | | 7 | | | loL(avg) | "L" level average output current | RESET | VDD = 5 V | | | 5 | m/ | | ioc(avg) | (Note 2) | INCOL I | VDD = 3 V | | | 2 | - ''' | | ZIOH(ova) | "H" level total average current | | | | | -60 | m/ | | ΣIOH(avg) | i i ievei totai average current | P0, P1, D0–D6 | | | | -60
-60 | - ''' | | Zlor (ova) | "L" level total average current | D7, C, CNTR0, CNTR1
nt P0, P1, D0–D6 | | | | 80 | m/ | | ΣIoL(avg) | ∟ level total average current | FU, FI, DU-D6 | | | | 00 | _ ''''A | Notes 1: At 1/2 bias: VLC1 = VLC2 = (1/2)•VLC3 At 1/3 bias: VLC1 = (1/3)•VLC3, VLC2 = (2/3)•VLC3 ^{2:} The average output current is the average value during 100 ms. #### **RECOMMENDED OPERATING CONDITIONS 2** (Mask ROM version: Ta = -20 °C to 85 °C, VDD = 2 to 5.5 V, unless otherwise noted) (One Time PROM version: Ta = -20 °C to 85 °C, VDD = 2.5 to 5.5 V, unless otherwise noted) | Symbol | Parameter | | Conditions | | | Unit | | | |----------|-------------------------------------|----------------------|---------------------|-----------------------------|------|-----------|------|-------| | Cymbol | raiancter | | | | Min. | Тур. | Max. | OTILL | | f(XIN) | Oscillation frequency | Mask ROM | Through mode | VDD = 4 to 5.5 V | | | 6 | MHz | | | (with a ceramic resonator) | version | | VDD = 2.7 to 5.5 V | | | 4.4 | | | | | | | VDD = 2 to 5.5 V | | | 2.2 | | | | | |
Frequency/2 mode | VDD = 2.7 to 5.5 V | | | 6 | | | | | | | VDD = 2 to 5.5 V | | | 4.4 | | | | | | Frequency/4, 8 mode | VDD = 2 to 5.5 V | | | 6 | | | | | One Time PROM | Through mode | VDD = 4 to 5.5 V | | | 6 | | | | | version | | VDD = 2.7 to 5.5 V | | | 4.4 | | | | | | | VDD = 2.5 to 5.5 V | | | 2.2 | | | | | | Frequency/2 mode | VDD = 2.7 to 5.5 V | | | 6 | 1 | | | | | | VDD = 2.5 to 5.5 V | | | 4.4 | 1 | | | | | Frequency/4, 8 mode | VDD = 2.5 to 5.5 V | | | 6 | 1 | | f(XIN) | Oscillation frequency | VDD = 2.7 to 5.5 \ | / | | | | 4.4 | MHz | | | (at RC oscillation) (Note) | | | | | | | | | f(XIN) | Oscillation frequency | Mask ROM | Through mode | VDD = 4 to 5.5 V | | | 4.8 | MHz | | | (with a ceramic resonator selected, | version | | VDD = 2.7 to 5.5 V | | | 3.2 | | | | external clock input) | | | VDD = 2 to 5.5 V | | | 1.6 | | | | | | Frequency/2 mode | VDD = 2.7 to 5.5 V | | | 4.8 | 1 | | | | | | VDD = 2 to 5.5 V | | | 3.2 | 1 | | | | | Frequency/4, 8 mode | VDD = 2 to 5.5 V | | | 4.8 | | | | | One Time PROM | Through mode | VDD = 4 to 5.5 V | | | 4.8 | | | | | version | | VDD = 2.7 to 5.5 V | | | 3.2 | | | | | | | VDD = 2.5 to 5.5 V | | | 1.6 | | | | | | Frequency/2 mode | VDD = 2.7 to 5.5 V | | | 4.8 | | | | | | | VDD = 2.5 to 5.5 V | | | 3.2 | | | | | | Frequency/4, 8 mode | VDD = 2.5 to 5.5 V | | | 4.8 | | | f(XCIN) | Oscillation frequency (sub-clock) | Quartz-crystal os | cillator | • | | | 50 | kHz | | f(CNTR) | Timer external input frequency | CNTR0, CNTR1 | | | | f(STCK)/6 | Hz | | | tw(CNTR) | Timer external input period | CNTR0, CNTR1 | | 3/f(STCK) | | | S | | | | ("H" and "L" pulse width) | | | ` | | | | | | TPON | Power-on reset circuit | Mask ROM version VDD | | | | | 100 | μs | | | valid supply voltage rising time | One Time PROM | version | $VDD = 0 \rightarrow 2.5 V$ | | | 100 | 1 | Note: The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits. ### **ELECTRICAL CHARACTERISTICS 1** (Mask ROM version: Ta = -20 °C to 85 °C, VDD = 2 to 5.5 V, unless otherwise noted) (One Time PROM version: Ta = -20 °C to 85 °C, VDD = 2.5 to 5.5 V, unless otherwise noted) | Symbol | Parameter | Te | | Limits | | | | |--------|------------------------------------|----------------------------|--------------|--------|------|------|----| | | Parameter | IE | Min. | Тур. | Max. | Unit | | | Vон | "H" level output voltage | VDD = 5 V | IOH = -10 mA | 3 | | | V | | | P0, P1, D0-D6 | | IOH = -3 mA | 4.1 | | | | | | | VDD = 3 V | IOH = -5 mA | 2.1 | | | 1 | | | | | IOH = -1 mA | 2.4 | | | 1 | | Voн | "H" level output voltage | VDD = 5 V | IOH = -20 mA | 3 | | | V | | | D7, C, CNTR0, CNTR1 | | IOH = -6 mA | 4.1 | | | | | | | VDD = 3 V | IOH = -10 mA | 2.1 | | | 1 | | | | | IOH = -3 mA | 2.4 | | | | | Vol | "L" level output voltage | VDD = 5 V | IOL = 12 mA | | | 2 | V | | | P0, P1 | | IOL = 4 mA | | | 0.9 | | | | | VDD = 3 V | IOL = 6 mA | | | 0.9 | | | | | | IOL = 2 mA | | | 0.6 | | | VoL | "L" level output voltage | VDD = 5 V | IOL = 15 mA | | | 2 | V | | | Do-D9, C, CNTR0, CNTR1 | | IOL = 5 mA | | | 0.9 | | | | | VDD = 3 V | IOL = 9 mA | | | 1.4 | | | | | | IOL = 3 mA | | | 0.9 | | | VoL | "L" level output voltage | VDD = 5 V | IOL = 5 mA | | | 2 | V | | | RESET | | IOL = 1 mA | | | 0.6 | | | | | VDD = 3 V | IOL = 2 mA | | | 0.9 | | | liн | "H" level input current | VI = VDD | | | | 1 | μΑ | | | P0, P1, P2, P3, D0-D7, VDCE, RESET | | | | | | | | | CNTR0, CNTR1, INT0, INT1 | | | | | | | | lıL | "L" level input current | VI = 0 V P0, P1 No pull-up | | | | -1 | μΑ | | | P0, P1, P2, P3, D0-D7, VDCE, | | | | | | | | | CNTR0, CNTR1, INT0, INT1 | | | | | | | ### **ELECTRICAL CHARACTERISTICS 2** (Mask ROM version: Ta = -20 °C to 85 °C, VDD = 2 to 5.5 V, unless otherwise noted) (One Time PROM version: Ta = -20 °C to 85 °C, VDD = 2.5 to 5.5 V, unless otherwise noted) | Symbol | Parameter | | Test conditions | | | Limits Min. Typ. Max. | | | |---|---------------------------------------|------------------------------|--|--------------------|-----|-----------------------|------|----------| | | Supply current at active mode | | V 5.V | | | Тур. | Max. | | | IDD | Supply current | | VDD = 5 V | f(STCK) = f(XIN)/8 | | 1.4 | 2.8 | mA | | | | (with a ceramic resonator) | f(XIN) = 6 MHz | f(STCK) = f(XIN)/4 | | 1.6 | 3.2 | - | | | | | f(XCIN) = 32 kHz | f(STCK) = f(XIN)/2 | | 2 | 4 | - | | | | | \\ 5\\ | f(STCK) = f(XIN) | | 2.8 | 5.6 | | | | | | VDD = 5 V | f(STCK) = f(XIN)/8 | | 1.1 | 2.2 | mA | | | | | f(XIN) = 4 MHz | f(STCK) = f(XIN)/4 | | 1.2 | 2.4 | | | | | | f(XCIN) = 32 kHz | f(STCK) = f(XIN)/2 | | 1.5 | 3 | - | | | | | | f(STCK) = f(XIN) | | 2 | 4 | | | | | | VDD = 3 V | f(STCK) = f(XIN)/8 | | 0.4 | 0.8 | mA | | | | | f(XIN) = 4 MHz | f(STCK) = f(XIN)/4 | | 0.5 | 1 | | | | | | f(XCIN) = 32 kHz | f(STCK) = f(XIN)/2 | | 0.6 | 1.2 | | | | | | | f(STCK) = f(XIN) | | 8.0 | 1.6 | | | | | at active mode | VDD = 5 V | f(STCK) = f(XIN)/8 | | 55 | 110 | μΑ | | | | (with a quartz-crystal | f(XIN) = stop | f(STCK) = f(XIN)/4 | | 60 | 120 | | | | | oscillator) | f(XCIN) = 32 kHz | f(STCK) = f(XIN)/2 | | 65 | 130 | | | | | | | f(STCK) = f(XIN) | | 70 | 140 | | | | | | VDD = 3 V | f(STCK) = f(XIN)/8 | | 12 | 24 | μΑ | | | | | f(XIN) = stop | f(STCK) = f(XIN)/4 | | 13 | 26 | | | | | | f(XCIN) = 32 kHz | f(STCK) = f(XIN)/2 | | 14 | 28 | 1 | | | | | | f(STCK) = f(XIN) | | 15 | 30 | 1 | | | | at clock operation mode | f(XCIN) = 32 kHz | VDD = 5 V | | 20 | 60 | μΑ | | | | (POF instruction execution) | | VDD = 3 V | | 5 | 15 | 1 | | | | at RAM back-up mode | Ta = 25 °C | | | 0.1 | 1 | μΑ | | | | (POF2 instruction execution) | VDD = 5 V
VDD = 3 V | | | | 10 | 1 | | | | (1 Of 2 mondonor oxocomor) | | | | | 6 | - | | Rpu | Pull-up resistor value | | VI = 0 V | VDD = 5 V | 30 | 60 | 125 | kΩ | | 0 | P0, P1, RESET | | | VDD = 3 V | 50 | 120 | 250 | 1 | | VT+ - VT- | Hysteresis CNTR0, CNTR1, INT0, INT1 | | VDD = 5 V | V D D = 0 V | | 0.2 | 200 | V | | • | | | VDD = 3 V | | | 0.2 | | 1 | | VT+ - VT- | Hysteresis RESET | | VDD = 5 V | | | 1 | | V | | VIT VI- | Trysteresis RES | ,L1 | VDD = 3 V | | | 0.4 | | - | | f(RING) | Ring oscillator clock frequency | | VDD = 5 V | | 1 | 2 | 3 | MHz | | I(KING) | King oscillator | clock frequency | VDD = 3 V | | 0.5 | 1 | 1.8 | IVITZ | | Δf(XIN) | Frequency error (with RC oscillation, | | $VDD = 5 V \pm 10 \%$, $Ta = 25 °C$
$VDD = 5 V \pm 10 \%$, $Ta = 25 °C$ | | 0.5 | ' | ±17 | % | | ΔI(ΛIN) | | | | | | | ±17 | 70 | | | | | | | | | . 17 | - | | | error of external R, C not included) | | | | | | ±17 | | | D00:: | (Note) COM output impedance | | | | | 4.5 | 7.5 | 10 | | RCOM | COM output im | pedance | VDD = 5 V | | | 1.5 | 7.5 | kΩ | | | 050 | | VDD = 3 V | | | 2 | 10 | 1.0 | | RSEG | SEG output imp | pedance | VDD = 5 V | | 1 | 1.5 | 7.5 | kΩ | | | | | VDD = 3 V | | | 2 | 10 | <u> </u> | | RVLC | Internal resisto | r for LCD power supply | When dividing resistor 2r X 3 selected | | 200 | 480 | 960 | kΩ | | | | | When dividing resistor 2r X 2 selected | | | 320 | 640 | - | | | | | When dividing resistor r X 3 selected | | | 240 | 480 | - | | | | | When dividing resistor r X 2 selected | | | 160 | 320 | | Note: When RC oscillation is used, use the external 33 pF capacitor (C). #### **VOLTAGE DROP DETECTION CIRCUIT CHARACTERISTICS** (Ta = -20 °C to 85 °C, unless otherwise noted) | Symbol | Parameter | Test conditions | | Unit | | | | |----------|----------------------------|---|-----------|------|------|-------|----| | Syllibol | Farameter | Test conditions | Min. | Тур. | Max. | Offic | | | VRST | Detection voltage (Note 1) | | 1.4 | 1.5 | 1.6 | V | | | | | Ta = 25 °C | | 1.1 | | 1.9 | | | IRST | Operation current | at power down | VDD = 5 V | | 50 | 100 | μΑ | | | | (Note 2) | VDD = 3 V | | 30 | 60 | | | TRST | Detection time | $VDD \rightarrow (VRST-0.1 \text{ V}) \text{ (Note 3)}$ | | | 0.2 | 1.2 | ms | Notes 1: The detected voltage (VRST) is defined as the voltage when reset occurs when the supply voltage (VDD) is falling. 2: After the SVDE instruction is executed, the voltage drop detectin circuit is valid at power down mode. 3: The detection time (TRST) is defined as the time until reset occurs when the supply voltage (VDD) is falling to [VRST-0.1 V]. #### **BASIC TIMING DIAGRAM** #### **BUILT-IN PROM VERSION** In addition to the mask ROM versions, the 4554 Group has the One Time PROM versions whose PROMs can only be written to and not be erased. The built-in PROM version has functions similar to those of the mask ROM versions, but it has PROM mode that enables writing to built-in PROM. Table 25 shows the product of built-in PROM version. Figure 73 shows the pin configurations of built-in PROM versions. The One Time PROM version has pin-compatibility with the mask ROM version. Table 25 Product of built-in PROM version | Part number | PROM size
(X 10 bits) | RAM size
(X 4 bits) | Package | ROM type | |-------------|--------------------------|------------------------|---------|----------------------------------| | M34554EDFP | 16384 words | 512 words | 64P6N-A | One Time PROM [shipped in blank] | Fig. 59 Pin configuration of built-in PROM version #### (1) PROM mode The built-in PROM version has a PROM mode in addition to a normal operation mode. The PROM mode is used to write to and read from the built-in PROM. In the PROM mode, the programming adapter can be used with a general-purpose PROM programmer to write to or read from the built-in PROM as if it were M5M27C256K. Programming adapter is listed in Table 26. Contact addresses at the end of this data sheet for the appropriate PROM programmer. · Writing and reading of built-in PROM Programming voltage is 12.5 V. Write the program in the PROM of the built-in
PROM version as shown in Figure 74. #### (2) Notes on handling - ①A high-voltage is used for writing. Take care that overvoltage is not applied. Take care especially at turning on the power. - ② For the One Time PROM version shipped in blank, Renesas Technology corp. does not perform PROM writing test and screening in the assembly process and following processes. In order to improve reliability after writing, performing writing and test according to the flow shown in Figure 74 before using is recommended (Products shipped in blank: PROM contents is not written in factory when shipped). #### (3) Difference between Mask ROM version and One Time PROM version Mask ROM version and One Time PROM version have some difference of the following characteristics within the limits of an electrical property by difference of a manufacture process, built-in ROM, and a layout pattern. - a characteristic value - a margin of operation - the amount of noise-proof - noise radiation, etc., Accordingly, be careful of them when swithcing. Table 26 Programming adapter | Part number | Name of Programming Adapter | | | |-------------|-----------------------------|--|--| | M34554EDFP | PCA7448 | | | Fig. 60 PROM memory map Fig. 61 Flow of writing and test of the product shipped in blank #### **PACKAGE OUTLINE** ### 64P6N-A #### Plastic 64pin 14×14mm body QFP # REVISION HISTORY # 4554 Group Data Sheet | Rev. | Date | | Description | | | | | | |------|---------------|-----------|--|--|--|--|--|--| | | | Page | Page Summary | | | | | | | 1.00 | Nov. 27, 2001 | | First edition issued | | | | | | | 2.00 | Jul. 01, 2003 | All pages | "Preliminary Notice: This is not a final specification. Some parametric limits are subject to change." eliminated. | Sales Strategic Planning Div. | Nippon Bldg., 2-6-2, | Ohte-machi, Chiyoda-ku, | Tokyo 100-0004, | Japan | |-------------------------------|----------------------|-------------------------|-----------------|-------| |-------------------------------|----------------------|-------------------------|-----------------|-------| Keep safety first in your circuit designs! 1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap. - Notes regarding these materials or (iii) prevention against any mairunction or misnap. Notes regarding these materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, or igninating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com). - (http://www.renesas.com). - (http://www.renesas.com). 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. 6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein. http://www.renesas.com