Features

- 405 nm, 650 nm and 780 nm Wavelengths Supported
- Blu-ray/HD-DVD x5, CD-R/RW x52, DVD-R/RW x16
- · Adjustment of Mode and Gain by Setting Internal Register via Two-wire Interface (TWI)
- 200 MHz Channel Bandwidth
- Paraphase Outputs
- Internal Reference Voltage Generation
- · Fast Settling Time
- Low Offset Voltage
- Power-down Mode
- Pb-free Optical 12-pin Package

Applications

- Blu-ray/HD-DVD
- DVD+RW with CD-RW Capability
- DVD-RW with CD-RW Capability
- . DVD-RAM with CD-RW Capability
- Recordable Optical Data Storage Devices

1. Description

The ATR1841 is a front monitor diode (FMD) which controls the laser power of the optical pickup for Blu-ray/HD-DVD, DVD and CD drives in one IC.

With the Two-wire Interface (TWI) it is possible to fit the laser power for Blu-ray/HD-DVD, DVD and CD. Two bits are used to set the mode/gain level and 6 additional bits are used for gain trimming, within ±6 dB. Entering sleep mode is also controlled via the TWI.

The integrated PIN diode and the high speed amplifier with low output impedance ensures stable driver performance.

All output channels are set to tri-state during sleep mode.

Due to its small package size the ATR1841 is especially suited for applications with low height requirements like SLIM and Ultra-SLIM drives.

Front Monitor Diode for Blu-ray/HD-DVD/ DVD/CD with TWI

ATR1841

Summary

Preliminary

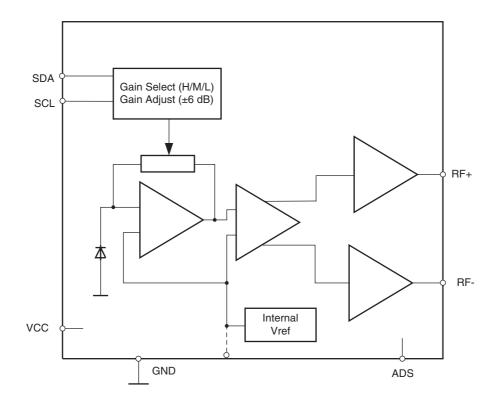

NOTE: This is a summary document. The complete document is currently not available. For more information, please contact your local Atmel sales office.

Figure 1-1. Block Diagram

2. Pin Configuration

Figure 2-1. Pinning QFN12L

Table 2-1.Pin Description

Pin	Symbol	Туре	Function	
1	GND	Supply	Ground	
2	RF-	Analog	Negative output	
3	RF+	Analog	Positive output	
4	VCC	Supply	Power supply	
5	SDA	Digital	TWI serial data	
6	SCL	Digital	TWI serial clock	
7	ADS	Analog	TWI slave address select	
8	GND	Supply	Ground	
9	NC		Not connected	
10	NC		Not connected	
11	NC		Not connected	
12	NC		Not connected	

3. Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameters	Symbol	Value	Unit
Supply voltage	V _{CC}	-0.5 to +6.0	V
Input voltage at any input	V _{in}	-0.5 to VCC - 0.5	V
Storage temperature	T _{stg}	-40 to +100	°C
Soldering temperature QFN_Open package	T _{sol}	260	°C

4. Recommended Operating Conditions

Parameters	Symbol	Value	Unit
Supply voltage	V _{CC}	4.5 to 5.5	V
Operating temperature range	T_{amb}	-10 to +80	°C

5. Electrical Characteristics: General

 V_{CC} = 5V, T_{amb} = 25°C, λ = 405 nm/780 nm/650 nm Output load: R_{load} = 10 k Ω , C_{load} = 20 pF

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
1	DC Specifications, Power	er Supply		1				'	
1.1	Supply current			I _{cc}		28	30	mA	Α
1.2	Supply current (standby mode)			I _{cc}			0.5	mA	Α
1.3	V _{REF_INT}					1.65		V	Α
1.4	TCV _{REF_INT}					15		μV/°C	С
1.5	Maximum output voltage			V _{out}	VCC - 0.9			V	С
1.6	Minimum output voltage			V _{out}			0.3	V	С
1.7	Power supply rejection ratio	Low-frequency (10 kHz), inclusive application/flexboard		PSRR		–45		dB	С
1.8	Power supply rejection ratio	High-frequency (100 kHz), inclusive application/ flexboard		PSRR		–45		dB	С
2	Output Offset Voltage			•				•	•
2.1	Output offset	$V_{REF} - V_{RF+}, V_{REF} - V_{RF-}$		V _{OFF1}	-20	0	+20	mV	С
2.2	Offset drift			dV _{OFF} /dT	-25		+25	μV/°C	С

 $^{^{\}star}$) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

6. Two-wire Interface (TWI)

6.1 Slave Address

Ī	MSB						(ADS)	LSB
Ī	0	0	1	1	1	0	0	R/W = 0
Ī	0	0	1	1	1	0	1	R/W = 0

Pin ADS = low (GND) Pin ADS = high (V_{CC})

6.2 Data

MSB							LSB
m1	m2	g1	g2	g3	g4	g5	g6

6.3 Mode Setting

The first two bits select the mode/gain level.

 Table 6-1.
 Mode Selection Register

m1	m2	Mode Select
1	1	High gain
1	0	Middle gain
0	1	Low gain
0	0	Sleep

6.4 Gain Setting

The last six bits are used to finely adjust the gain by ±6 dB

Table 6-2.Gain Selection Register

g1	g2	g3	g4	g5	g6	Gain			
1	1	1	1	1	1	+6 dB			
1	0	0	0	0	0	0 dB			
0	0	0	0	0	0	−6 dB			

7. Applications Recommendation

To achieve the best performance VCC needs to be blocked using a high quality capacitor (C = 100 nF) as close to IC/pin as possible.

8. Photo Diode Arrangement

Figure 8-1. Phote Diode Arrangement

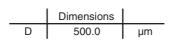
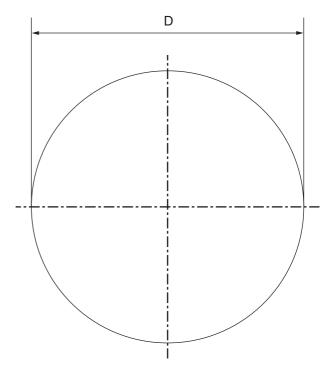
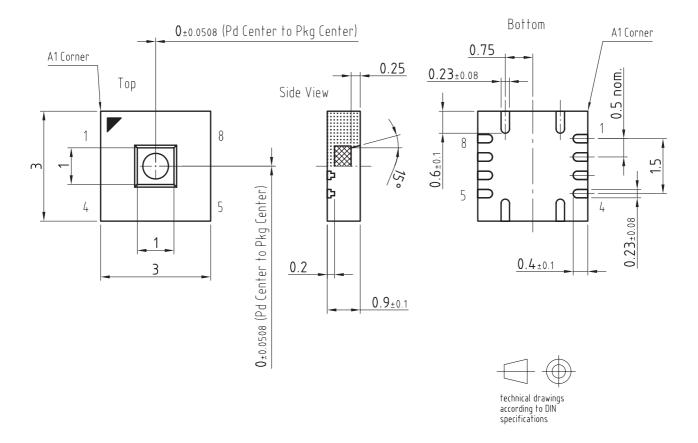



Photo diode is symmetrically centered to the center of the chip and package

9. Ordering Information


Extended Type Number	Package	Remarks
ATR1841-P1QN	QFN_OPEN_3x3_8L	Taped and reeled, Pb-free

10. Package Information

Package: QFN_OPEN_3x3_8L_W1x1

Dimensions in mm

Not indicated tolerances ±0.05

Drawing-No.: 6.543-5138.01-4

Issue: 2; 15.06.07

Headquarters

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131 USA

Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

International

Atmel Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong

Tel: (852) 2721-9778 Fax: (852) 2722-1369 Atmel Europe

Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex

France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11 Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site

www.atmel.com

Technical Support

dvd_ldd@atmel.com

Sales Contact

www.atmel.com/contacts

Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2007 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.