ICS84314-02 700MHz, Crystal-to-3.3V/2.5V LVPECL Frequency Synthesizer w/Fanout Buffer #### GENERAL DESCRIPTION The ICS84314-02 is a general purpose quad output frequency synthesizer and a member of the HiPerClockS™ family of High Performance Clock Solutions from ICS. When the device uses parallel loading, the M bits are programmable and the output divider is hard-wired for divide by 2 thus providing a frequency range of 125MHz to 350MHz. In serial programming mode, the M bits are programmable and the output divider can be set for either divide by 1, 2, 4 or divide by 8, providing a frequency range of 31.25MHz to 700MHz. Additionally, the device supports spread spectrum clocking (SSC) for minimizing Electromagnetic Interference (EMI). The low cycle-cycle jitter and broad frequency range of the ICS84314-02 make it an ideal clock generator for a variety of demanding applications which require high performance. #### **F**EATURES - Fully integrated PLL - · 4 differential 3.3V or 2.5V LVPECL outputs - Selectable crystal oscillator interface or LVCMOS/LVTTLTEST_CLK input - Output frequency range: 31.25MHz to 700MHz - VCO range: 250MHz to 700MHz - Supports Spread Spectrum Clocking (SSC) - Parallel interface for programming counter and output dividers during power-up - · Serial 3 wire interface - Cycle-to-cycle jitter: 20ps (typical) - · Output skew: TBD - · Output duty cycle: TBD - Full 3.3V or mixed 3.3V core, 2.5V output operating supply - 0°C to 85°C ambient operating temperature #### **BLOCK DIAGRAM** #### PIN ASSIGNMENT The Preliminary Information presented herein represents a product in prototyping or pre-production. The noted characteristics are based on initial product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice. Integrated Circuit Systems, Inc. ## ICS84314-02 # 700MHz, Crystal-to-3.3V/2.5V LVPECL Frequency Synthesizer w/Fanout Buffer #### **FUNCTIONAL DESCRIPTION** NOTE: The functional description that follows describes operation using a 16MHz crystal. Valid PLL loop divider values for different crystal or input frequencies are defined in the Input Frequency Characteristics, Table 5, NOTE 1. The ICS84314-02 features a fully integrated PLL and therefore requires no external components for setting the loop bandwidth. A parallel-resonant, fundamental crystal is used as the input to the on-chip oscillator. The output of the oscillator is divided by 16 prior to the phase detector. With a 16MHz crystal, this provides a 1MHz reference frequency. The VCO of the PLL operates over a range of 250MHz to 700MHz. The output of the M divider is also applied to the phase detector. The phase detector and the M divider force the VCO output frequency to be 2M times the reference frequency by adjusting the VCO control voltage. Note that for some values of M (either too high or too low), the PLL will not achieve lock. The output of the VCO is scaled by a divider prior to being sent to each of the LVPECL output buffers. The divider provides a 50% output duty cycle. The programmable features of the ICS84314-02 support two input modes to program the M divider. The two input operational modes are parallel and serial. *Figure 1* shows the timing diagram for each mode. In parallel mode, the nP_LOAD input is initially LOW. The data on inputs M0 through M8 is passed directly to the M divider. On the LOW-to-HIGH transition of the nP_LOAD input, the data is latched and the M divider remains loaded until the next LOW transition on nP_LOAD or until a serial event occurs. As a result, the M bits can be hardwired to set the M divider to a specific default state that will automatically occur during power-up. In parallel mode, the N output divider is set to 2. In serial mode, the N output divider can be set for either $\div 1, \div 2, \div 4$ or $\div 8$. The relationship between the VCO frequency, the crystal frequency and the M divider is defined as follows: $$fVCO = \frac{fxtal}{16} \times 2M$$ The M value and the required values of M0 through M8 are shown in Table 3B, Programmable VCO Frequency Function Table. Valid M values for which the PLL will achieve lock for a 16MHz reference are defined as $125 \le M \le 350$. The frequency out is defined as follows: fout = fVCO x $\frac{1}{2} = \frac{fx_1^2}{2} \times 2M \times \frac{1}{2}$. Serial operation occurs when nP_LOAD is HIGH and S_LOAD is LOW. The shift register is loaded by sampling the S_DATA bits with the rising edge of S_CLOCK. The contents of the shift register are loaded into the M divider and N output divider when S_LOAD transitions from LOW-to-HIGH. The M divide and N output divide values are latched on the HIGH-to-LOW transition of S_LOAD. If S_LOAD is held HIGH, data at the S_DATA input is passed directly to the M divider and N output divider on each rising edge of S_CLOCK. FIGURE 1. PARALLEL & SERIAL LOAD OPERATIONS TABLE 1A. N OUTPUT DIVIDER FUNCTION TABLE (SERIAL LOAD) | N1 Logic Value | N0 Logic Value | N Output Divide | |----------------|----------------|-----------------------| | 0 | 0 | ÷1 | | 0 | 1 | ÷2 (Power-up Default) | | 1 | 0 | ÷4 | | 1 | 1 | ÷8 | TABLE 1B. SSC FUNCTION TABLE | SSC0 | SSC State | |------|------------------------| | 0 | Off (Power-up Default) | | 1 | TBD | *NOTE: The NULL timing slot must be observed. **NOTE: "N" can only be controlled through serial loading. # ICS84314-02 700MHz, Crystal-to-3.3V/2.5V LVPECL Frequency Synthesizer w/Fanout Buffer #### TABLE 2. PIN DESCRIPTIONS | Number | Name | Т | уре | Description | |-----------------------|---------------------------|--------|----------|--| | 1, 2, 5
29, 30, 31 | M4, M5, M8,
M0, M1, M2 | Input | Pulldown | M divider inputs. Data latched on LOW-to-HIGH transition of nP_LOAD input. LVCMOS / LVTTL interface levels. | | 3, 4, 32 | M6, M7, M3 | Input | Pullup | of nP_LOAD input. LVCIMOS / LV FFL interface levels. | | 6 | V_{EE} | Power | | Negative supply pin. | | 7 | V_{cc} | Power | | Core power supply pin. | | 8, 17 | V _{cco} | Power | | Output supply pins. | | 9, 10 | Q0, nQ0 | Output | | Differential output for the synthesizer. LVPECL interface levels. | | 11, 12 | Q1, nQ1 | Output | | Differential output for the synthesizer. LVPECL interface levels. | | 13, 14 | Q2, nQ2 | Output | | Differential output for the synthesizer. LVPECL interface levels. | | 15, 16 | Q3, nQ3 | Output | | Differential output for the synthesizer. LVPECL interface levels. | | 18 | MR | Input | Pulldown | Active High Master Reset. When logic HIGH, the internal dividers are reset causing the true outputs Qx to go low and the inverted outputs nQx to go high. When logic LOW, the internal dividers and the outputs are enabled. Assertion of MR does not affect loaded M values. LVCMOS / LVTTL interface levels. | | 19 | S_CLOCK | Input | Pulldown | Clocks in serial data present at S_DATA input into the shift register on the rising edge of S_CLOCK. LVCMOS / LVTTL interface levels. | | 20 | S_DATA | Input | Pulldown | Shift register serial input. Data sampled on the rising edge of S_CLOCK. LVCMOS / LVTTL interface levels. | | 21 | S_LOAD | Input | Pulldown | Controls transition of data from shift register into the dividers. LVCMOS / LVTTL interface levels. | | 22 | V _{CCA} | Power | | Analog supply pin. | | 23 | XTAL_SEL | Input | Pullup | Selects between the crystal oscillator or test clock as the PLL reference source. Selects XTAL inputs when HIGH. Selects TEST_CLK when LOW. LVCMOS / LVTTL interface levels. | | 24 | TEST_CLK | Input | Pulldown | Test clock input. LVCMOS / LVTTL interface levels. | | 25, 26 | XTAL_IN,
XTAL_OUT | Input | | Crystal oscillator interface. XTAL_IN is the input. XTAL_OUT is the output. | | 27 | nP_LOAD | Input | Pulldown | Parallel load input. Determines when data present at M8:M0 is loaded into the M divider. LVCMOS / LVTTL interface levels. | | 28 | VCO_SEL | Input | Pullup | Determines whether synthesizer is in PLL or bypass mode. LVCMOS / LVTTL interface levels. | NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values. TABLE 3. PIN CHARACTERISTICS | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------------|-------------------------|-----------------|---------|---------|---------|-------| | C _{IN} | Input Capacitance | | | 4 | | pF | | R _{PULLUP} | Input Pullup Resistor | | | 51 | | ΚΩ | | R _{PULLDOWN} | Input Pulldown Resistor | | | 51 | | ΚΩ | # ICS84314-02 # 700MHz, Crystal-to-3.3V/2.5V LVPECL Frequency Synthesizer w/Fanout Buffer TABLE 4A. PARALLEL AND SERIAL MODE FUNCTION TABLE | | | | Inputs | | | Conditions | |----|---------|------|--------------|---------|--------|---| | MR | nP_LOAD | M | S_LOAD | S_CLOCK | S_DATA | Conditions | | Н | Х | Х | Х | X | Х | Reset. Forces outputs LOW. | | L | L | Data | Х | X | Х | Data on M inputs passed directly to the M divider. | | L | 1 | Data | L | Х | Х | Data is latched into input registers and remains loaded until next LOW transition or until a serial event occurs. | | L | Н | Х | L | 1 | Data | Serial input mode. Shift register is loaded with data on S_DATA on each rising edge of S_CLOCK. | | L | Н | Х | 1 | L | Data | Contents of the shift register are passed to the M divider and N output divider. | | L | Н | Х | \downarrow | L | Data | M divider and N output divider values are latched. | | L | Н | Х | L | Х | Х | Parallel or serial input do not affect shift registers. | | L | Н | Х | Н | 1 | Data | S_DATA passed directly to M divider as it is clocked. | NOTE: L = LOW H = HIGH X = Don't care \uparrow = Rising edge transition \downarrow = Falling edge transition TABLE 4B. PROGRAMMABLE VCO FREQUENCY FUNCTION TABLE (NOTE 1) | VCO Frequency | M Division | 256 | 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 | |---------------|------------|-----|-----|----|----|----|----|----|----|----| | (MHz) | M Divide | M8 | M7 | М6 | M5 | M4 | МЗ | M2 | M1 | MO | | 250 | 125 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | | 252 | 126 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | 254 | 127 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 256 | 128 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | • | • | • | • | • | • | • | • | • | • | • | | • | • | • | • | • | • | • | • | • | • | • | | 696 | 348 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | | 698 | 349 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | | 700 | 350 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | NOTE 1: These M divide values and the resulting frequencies correspond to crystal or TEST_CLK input frequency of 16MHz. TABLE 4C. PROGRAMMABLE OUTPUT DIVIDER FUNCTION TABLE (SERIAL PROGRAMMING MODE ONLY) | | Input | | Output Frequency (MHz) | | | | |----------|----------|----------------|------------------------|---------|--|--| | N1 Logic | NO Logio | Q0:Q3, nQ0:nQ3 | | nQ0:nQ3 | | | | NI LOGIC | N0 Logic | N Divide | Minimum | Maximum | | | | 0 | 0 | 1 | 250 | 700 | | | | 0 | 1 | 2 | 125 | 350 | | | | 1 | 0 | 4 | 62.5 | 175 | | | | 1 | 1 | 8 | 31.25 | 87.5 | | | # ICS84314-02 # 700MHz, Crystal-to-3.3V/2.5V LVPECL Frequency Synthesizer w/Fanout Buffer #### ABSOLUTE MAXIMUM RATINGS Supply Voltage, V_{CC} 4.6V Inputs, V_{I} -0.5V to V_{CC} + 0.5 V Outputs, I_O Continuous Current 50mA Surge Current 100mA Package Thermal Impedance, $\theta_{JA} = 47.9^{\circ}\text{C/W} \ (0 \ \text{lfpm})$ Storage Temperature, T_{STG} -65°C to 150°C NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability. Table 5A. Power Supply DC Characteristics, $V_{CC} = V_{CCA} = V_{CCO} = 3.3V \pm 5\%$, Ta = 0°C to 85°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|-----------------------|-----------------|---------|---------|---------|-------| | V _{cc} | Core Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | V _{CCA} | Analog Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | V _{cco} | Output Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | I _{EE} | Power Supply Current | | | TBD | | mA | | I _{CCA} | Analog Supply Current | | | TBD | | mA | $\textbf{Table 5B. Power Supply DC Characteristics, } V_{\text{CC}} = V_{\text{CCA}} = 3.3 \text{V} \pm 5\%, V_{\text{CCO}} = 3.3 \text{V} \pm 5\% \text{ or } 2.5 \text{V} \pm 5\%, T_{\text{A}} = 0^{\circ}\text{C to } 85^{\circ}\text{C}$ | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|-----------------------|-----------------|---------|---------|---------|-------| | V _{cc} | Core Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | V _{CCA} | Analog Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | V _{cco} | Output Supply Voltage | | 2.375 | 2.5 | 2.625 | ٧ | | I _{EE} | Power Supply Current | | | TBD | | mA | | I _{CCA} | Analog Supply Current | | | TBD | | mA | # Integrated Circuit Systems, Inc. # ICS84314-02 # 700MHz, Crystal-to-3.3V/2.5V LVPECL Frequency Synthesizer w/Fanout Buffer $\textbf{TABLE 5C. LVCMOS/LVTTL DC CHARACTERISTICS, V}_{\text{CC}} = V_{\text{CCA}} = 3.3 \text{V} \pm 5\%, V_{\text{CCO}} = 3.3 \text{V} \pm 5\% \text{ or } 2.5 \text{V} \pm 5\%, TA = 0^{\circ}\text{C to } 85^{\circ}\text{C} + 2.5 \text{C} \text{$ | Symbol | | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------|-----------------------|--|--|---------|---------|-----------------------|-------| | | | TEST_CLK | | 2 | | V _{cc} + 0.3 | V | | V _{IH} | Input
High Voltage | VCO_SEL, XTAL_SEL,
nP_LOAD, MR, M0:M8,
S_LOAD, S_DATA, S_CLOCK | | 2 | | V _{cc} + 0.3 | V | | | | TEST_CLK | | -0.3 | | 1.3 | V | | V _{IL} | Input
Low Voltage | VCO_SEL, XTAL_SEL,
nP_LOAD, MR, M0:M8,
S_LOAD, S_DATA, S_CLOCK | | -0.3 | | 0.8 | V | | | Input | M0:M2, M4, M5, M8, MR,
nP_LOAD, S_CLOCK,
S_DATA, S_LOAD | V _{CC} = V _{IN} = 3.465V | | | 150 | μА | | I _{IH} | High Current | M3, M6, M7,
XTAL_SEL, VCO_SEL | $V_{CC} = V_{IN} = 3.465V$ | | | 5 | μΑ | | | | TEST_CLK | $V_{CC} = V_{IN} = 3.465V$ | | | 200 | μΑ | | I | Input | M0:M2, M4, M5, M8, MR,
nP_LOAD, S_CLOCK,
S_DATA, S_LOAD | $V_{CC} = 3.465V,$
$V_{IN} = 0V$ | -5 | | | μА | | IL . | Low Current | M3, M6, M7,
XTAL_SEL, VCO_SEL | $V_{CC} = 3.465V,$ $V_{IN} = 0V$ | -150 | | | μΑ | #### $\textbf{TABLE 5D. LVPECL DC Characteristics, V}_{\text{CC}} = V_{\text{CCA}} = 3.3 \text{V} \pm 5\%, V_{\text{CCO}} = 3.3 \text{V} \pm 5\% \text{ or } 2.5 \text{V} \pm 5\%, T_{\text{A}} = 0^{\circ}\text{C to } 85^{\circ}\text{C}$ | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |--------------------|-----------------------------------|-----------------|------------------------|---------|------------------------|-------| | V _{OH} | Output High Voltage; NOTE 1 | | V _{cco} - 1.4 | | V _{cco} - 0.9 | V | | V _{OL} | Output Low Voltage; NOTE 1 | | V _{cco} - 2.0 | | V _{cco} - 1.7 | V | | V _{SWING} | Peak-to-Peak Output Voltage Swing | | 0.6 | | 1.0 | V | NOTE 1: Outputs terminated with 50Ω to V_{cco} - 2V. See "Parameter Measurement Information" section, #### Table 6. Input Frequency Characteristics, $V_{CC} = V_{CCA} = 3.3V \pm 5\%$, $V_{CCO} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $T_A = 0^{\circ}C$ to $85^{\circ}C$ | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |---------------------------------|------------------|------------------------------|-----------------|---------|---------|---------|-------| | f _{IN} Input Frequency | TEST_CLK; NOTE 1 | | 10 | | 40 | MHz | | | | Input Frequency | XTAL_IN, XTAL_OUT;
NOTE 1 | | 12 | | 40 | MHz | | | | S_CLOCK | | | | 50 | MHz | NOTE 1: For the input crystal and reference frequency range, the M value must be set for the VCO to operate within the 250MHz to 700MHz range. Using the minimum input frequency of 12MHz, valid values of M are $167 \le M \le 466$. Using the maximum frequency of 40MHz, valid values of M are $50 \le M \le 140$. #### TABLE 7. CRYSTAL CHARACTERISTICS | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------------------------|-----------------|-------------|---------|---------|-------| | Mode of Oscillation | | Fundamental | | | | | Frequency | | 12 | | 40 | MHz | | Equivalent Series Resistance (ESR) | | | | 50 | Ω | | Shunt Capacitance | | | | 7 | pF | [&]quot;Output Load Test Circuit" diagrams. # Integrated Circuit Systems, Inc. # ICS84314-02 # 700MHz, Crystal-to-3.3V/2.5V LVPECL Frequency Synthesizer w/Fanout Buffer Table 8A. AC Characteristics, $V_{CC} = V_{CCA} = V_{CCO} = 3.3V \pm 5\%$, Ta = 0°C to 85°C | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |--------------------------------|----------------------------------|-------------------|-----------------|---------|---------|---------|-------| | F _{MAX} | Output Frequency Range | | | 31.25 | | 700 | MHz | | tjit(cc) | Cycle-to-Cycle Jitter; NOTE 1, 3 | | | | 20 | | ps | | tjit(per) | Period Jitter, RMS; NOTE 1 | | | | TBD | | ps | | tsk(o) | Output Skew; NOTE 2, 3 | | | | TBD | | ps | | t _R /t _F | Output Rise/Fall Time | | 20% to 80% | | 460 | | ps | | | Setup Time | M to nP_LOAD | | 5 | | | ns | | t _s | | S_DATA to S_CLOCK | | 5 | | | ns | | | | S_CLOCK to S_LOAD | | 5 | | | ns | | | | M to nP_LOAD | | 5 | | | ns | | t _H | Hold Time | S_DATA to S_CLOCK | | 5 | | | ns | | | | S_CLOCK to S_LOAD | | 5 | | | ns | | F _M | SSC Modulation Frequency; NOTE 4 | | | 30 | | 33.33 | KHz | | F _{MF} | SSC Modulation Factor; NOTE 4 | | | | 0.4 | 0.6 | % | | SSC _{red} | Spectral Reduction; NOTE 4 | | | 7 | 10 | | dB | | odc | Output Duty Cycle | | | | 50 | | % | | t _{LOCK} | PLL Lock Time | | | | | 1 | ms | See Parameter Measurement Information section. NOTE 1: Jitter performance using XTAL inputs. NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the output differential cross points. NOTE 3: This parameter is defined in accordance with JEDEC Standard 65. NOTE 4: Spread Spectrum clocking enabled. Table 8B. AC Characteristics, $V_{CC} = V_{CCA} = 3.3V \pm 5\%$, $V_{CCO} = 2.5V \pm 5\%$, Ta = 0°C to 85°C | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |--------------------|----------------------------------|-------------------|-----------------|---------|---------|---------|-------| | F _{MAX} | Output Frequency Range | | | 31.25 | | 700 | MHz | | tjit(cc) | Cycle-to-Cycle Jitter; NOTE 1, 3 | | | | 20 | | ps | | tjit(per) | Period Jitter, RMS; NOTE 1 | | | | TBD | | ps | | tsk(o) | Output Skew; NOTE 2, 3 | | | | TBD | | ps | | t_R/t_F | Output Rise/Fall Time | | 20% to 80% | | 460 | | ps | | | Setup Time | M to nP_LOAD | | 5 | | | ns | | t _s | | S_DATA to S_CLOCK | | 5 | | | ns | | | | S_CLOCK to S_LOAD | | 5 | | | ns | | | | M to nP_LOAD | | 5 | | | ns | | t _H H | Hold Time | S_DATA to S_CLOCK | | 5 | | | ns | | | | S_CLOCK to S_LOAD | | 5 | | | ns | | F _M | SSC Modulation Frequency; NOTE 4 | | | 30 | | 33.33 | KHz | | F _{MF} | SSC Modulation Factor; NOTE 4 | | | | 0.4 | 0.6 | % | | SSC _{red} | Spectral Reduction; NOTE 4 | | | 7 | 10 | | dB | | odc | Output Duty Cycle | | | | 50 | | % | | t _{LOCK} | PLL Lock Time | | | | | 1 | ms | See notes in Table 8A above. # ICS84314-02 700MHz, Crystal-to-3.3V/2.5V LVPECL Frequency Synthesizer w/Fanout Buffer # PARAMETER MEASUREMENT INFORMATION #### 3.3V CORE/3.3V OUTPUT LOAD AC TEST CIRCUIT 3.3V CORE/2.5V OUTPUT LOAD AC TEST CIRCUIT 1000 Cycles **OUTPUT SKEW** CYCLE-TO-CYCLE JITTER #### PERIOD JITTER OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD #### OUTPUT RISE/FALL TIME # ICS84314-02 700MHz, Crystal-to-3.3V/2.5V LVPECL Frequency Synthesizer w/Fanout Buffer #### **APPLICATION INFORMATION** #### Power Supply Filtering Techniques As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. The ICS84314-02 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. $V_{\rm CC}, V_{\rm CCA},$ and $V_{\rm CCO}$ should be individually connected to the power supply plane through vias, and bypass capacitors should be used for each pin. To achieve optimum jitter performance, power supply isolation is required. Figure 2 illustrates how a 10Ω resistor along with a $10\mu F$ and a $.01\mu F$ bypass capacitor should be connected to each $V_{\rm CCA}$ pin. FIGURE 2. POWER SUPPLY FILTERING #### **TERMINATION FOR 3.3V LVPECL OUTPUTS** The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines. FOUT and nFOUT are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. *Figures 3A and 3B* show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations. FIGURE 3A. LVPECL OUTPUT TERMINATION FIGURE 3B. LVPECL OUTPUT TERMINATION ## ICS84314-02 700MHz, Crystal-to-3.3V/2.5V LVPECL Frequency Synthesizer w/Fanout Buffer #### TERMINATION FOR 2.5V LVPECL OUTPUT Figure 4A and Figure 4B show examples of termination for 2.5V LVPECL driver. These terminations are equivalent to terminating 50Ω to V_{cc} - 2V. For V_{cc} = 2.5V, the V_{cc} - 2V is very close to ground level. The R3 in Figure 4A can be eliminated and the termination is shown in *Figure 4C*. FIGURE 4A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE FIGURE 4B. 2.5V LVPECL DRIVER TERMINATION EXAMPLE FIGURE 4C. 2.5V LVPECL TERMINATION EXAMPLE #### **CRYSTAL INPUT INTERFACE** The ICS84314-02 has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in *Figure 5* below were determined using a 25MHz, 18pF parallel resonant crystal and were chosen to minimize the ppm error. The optimum C1 and C2 values can be slightly adjusted for different board layouts. ## ICS84314-02 # 700MHz, Crystal-to-3.3V/2.5V LVPECL Frequency Synthesizer w/Fanout Buffer #### SPREAD SPECTRUM Spread-spectrum clocking is a frequency modulation technique for EMI reduction. When spread-spectrum is enabled, a 30KHz triangle waveform is used with 0.5% down-spread (+0.0%/-0.5%) from the nominal 200MHz clock frequency. An example of a triangle frequency modulation profile is shown in *Figure 6A* below. The ramp profile can be expressed as: - Fnom = Nominal Clock Frequency in Spread OFF mode (200MHz with 16MHz IN) - Fm = Nominal Modulation Frequency (30KHz) - δ = Modulation Factor (0.5% down spread) (1 - δ) fnom + 2 fm x δ x fnom x t when 0 < t < $\frac{1}{2\, fm}$, (1 - δ) fnom - 2 fm x δ x fnom x t when $\frac{1}{2 \, \text{fm}} < t < \frac{1}{\text{fm}}$ The ICS84314-02 triangle modulation frequency deviation will not exceed 0.6% down-spread from the nominal clock frequency (+0.0%/-0.5%). An example of the amount of down spread relative to the nominal clock frequency can be seen in the frequency domain, as shown in *Figure 6B*. The ratio of this width to the fundamental frequency is typically 0.4%, and will not exceed 0.6%. The resulting spectral reduction will be greater than 7dB, as shown in Figure 6B. It is important to note the ICS84314-02 7dB minimum spectral reduction is the component-specific EMI reduction, and will not necessarily be the same as the system EMI reduction. FIGURE 6A. TRIANGLE FREQUENCY MODULATION FIGURE 6B. 200MHz CLOCK OUTPUT IN FREQUENCY DOMAIN (A) Spread-Spectrum OFF (B) SPREAD-SPECTRUM ON # ICS84314-02 700MHz, Crystal-to-3.3V/2.5V LVPECL Frequency Synthesizer w/Fanout Buffer ## RELIABILITY INFORMATION Table 9. $\theta_{JA} vs.$ Air Flow Table for 32 Lead LQFP #### θ_{1Δ} by Velocity (Linear Feet per Minute) 0 200 500 Single-Layer PCB, JEDEC Standard Test Boards 67.8°C/W 55.9°C/W 50.1°C/W Multi-Layer PCB, JEDEC Standard Test Boards 47.9°C/W 42.1°C/W 39.4°C/W NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs. #### TRANSISTOR COUNT The transistor count for ICS84314-02 is: 5051 # ICS84314-02 700MHz, Crystal-to-3.3V/2.5V LVPECL Frequency Synthesizer w/Fanout Buffer #### PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP TABLE 10. PACKAGE DIMENSIONS | | JEDEC VARIATION ALL DIMENSIONS IN MILLIMETERS | | | | | | |-------------|---|------------|---------|--|--|--| | 0.//4.D.0.1 | ВВА | | | | | | | SYMBOL | MINIMUM | NOMINAL | MAXIMUM | | | | | N | | 32 | | | | | | Α | | | 1.60 | | | | | A 1 | 0.05 | | 0.15 | | | | | A2 | 1.35 | 1.40 | 1.45 | | | | | b | 0.30 | 0.37 | 0.45 | | | | | С | 0.09 | | 0.20 | | | | | D | | 9.00 BASIC | | | | | | D1 | | 7.00 BASIC | | | | | | D2 | | 5.60 | | | | | | E | | 9.00 BASIC | | | | | | E1 | | 7.00 BASIC | | | | | | E2 | | 5.60 | | | | | | е | | 0.80 BASIC | | | | | | L | 0.45 | 0.60 | 0.75 | | | | | θ | 0° | | 7° | | | | | ccc | | | 0.10 | | | | Reference Document: JEDEC Publication 95, MS-026 # ICS84314-02 700MHz, Crystal-to-3.3V/2.5V LVPECL Frequency Synthesizer w/Fanout Buffer #### TABLE 11. ORDERING INFORMATION | Part/Order Number | Marking | Package | Shipping Packaging | Temperature | |-------------------|--------------|--------------|--------------------|-------------| | ICS84314AY-02 | ICS84314AY02 | 32 Lead LQFP | tray | 0°C to 85°C | | ICS84314AY-02T | ICS84314AY02 | 32 Lead LQFP | tape & reel | 0°C to 85°C | The aforementioned trademark, HiPerClockS™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries. While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.