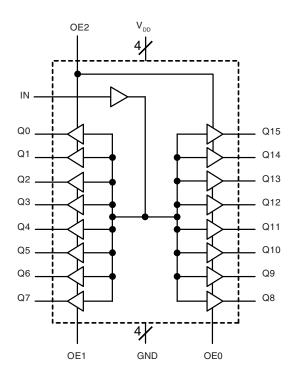
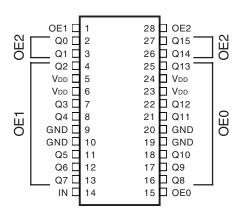


GENERAL DESCRIPTION


The ICS83115 is a low skew, 1-to-16 LVCMOS/LVTTL Fanout Buffer and a member of the HiPerClockS™ family of High Performance Clock Solutions from ICS. The ICS83115 single ended clock input accepts LVCMOS or LVTTL input lev-

els. The ICS83115 operates at full 3.3V supply mode over the commercial temperature range. Guaranteed output and part-to-part skew characteristics make the ICS83115 ideal for those clock distribution applications demanding well defined performance and repeatability.


FEATURES

- 16 LVCMOS/LVTTL outputs
- 1 LVCMOS/LVTTL clock input
- · Maximum output frequency: 200MHz
- · All inputs are 5V tolerant
- Output skew: 250ps (maximum)
- Part-to-part skew: 800ps (maximum)
- Additive phase jitter, RMS: 0.09ps (typical)
- · 3.3V operating supply
- 0°C to 70°C ambient operating temperature
- Lead-Free package available
- · Industrial temperature information available upon request

BLOCK DIAGRAM

PIN ASSIGNMENT

ICS83115 28-Lead SSOP, 150mil 9.9mm x 3.9mm x 1.7mm body package R Package (Top View)

TABLE 1. PIN DESCRIPTIONS

Number	Name	Туре		Description
1	OE1	Input	Pullup	Output enable. When LOW, forces outputs Q2 thru Q7 to HiZ state. 5V tolerant. LVCMOS/LVTTL interface levels.
2, 3, 4, 7, 8, 11, 12, 13, 16, 17, 18, 21, 22, 25, 26, 27	Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15	Output		LVCMOS/LVTTL clock outputs. 7Ω typical output impedance.
5, 6, 23, 24	$V_{_{ m DD}}$	Power		Core supply pin.
9, 10, 19, 20	GND	Power		Power supply ground.
14	IN	Input	Pulldown	LVCMOS/LVTTL clock input / 5V tolerant.
15	OE0	Input	Pullup	Output enable. When LOW, forces outputs Q8 thru Q13 to HiZ state. 5V tolerant. LVCMOS/LVTTL interface levels.
28	OE2	Input	Pullup	Output enable. When LOW, forces outputs Q0, Q1, Q15 and Q14 to HiZ state. 5V tolerant. LVCMOS/LVTTL interface levels.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
C _{PD}	Power Dissipation Capacitance (per output)	V _{DD} = 3.465V		11		pF
R _{PULLUP}	Input Pullup Resistor			51		ΚΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		ΚΩ
R _{out}	Output Impedance	$V_{DD} = 3.3V$	5	7	12	Ω

TABLE 3. FUNCTION TABLE

Inputs			Outputs			
OE0	OE1	OE2	Q0, Q1, Q14, Q15 (Control OE2)	Q2:Q7 (Control OE1)	Q8:Q13 (Control OE0)	
0	0	0	HiZ	HiZ	HiZ	
0	0	1	Active	HiZ	HiZ	
0	1	0	HiZ	Active	HiZ	
0	1	1	Active	Active	HiZ	
1	0	0	HiZ	HiZ	Active	
1	0	1	Active	HiZ	Active	
1	1	0	HiZ	Active	Active	
1	1	1	Active	Active	Active	

NOTE: OE0:OE2 are 5V tolerant.

ICS83115

Low Skew, 1-to-16 LVCMOS / LVTTL FANOUT BUFFER

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{DD} 4.6V

Inputs, V_{I} -0.5V to V_{DD} + 0.5 V

Outputs, V_O -0.5V to V_{DD} + 0.5V

Package Thermal Impedance, θ_{IA} 49°C/W (0 lfpm)

Storage Temperature, T_{STG} -65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 4A. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, Ta = 0° to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Power Supply Voltage		3.135	3.3	3.465	V
I _{DD}	Power Supply Current				50	mA

Table 4B. LVCMOS / LVTTL DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, Ta = 0° to 70°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage	OE0:OE2		2		$V_{DD} + 0.3$	V
	Input High Voltage	IN		2		$V_{DD} + 0.3$	V
V	Innut Low Voltogo	OE0:OE2		-0.3		0.8	V
V _{IL}	Input Low Voltage	IN		-0.3		1.3	V
	Input High Current	OE0:OE2	$V_{DD} = V_{IN} = 3.465V$			5	μΑ
I _{IH}		IN	$V_{DD} = V_{IN} = 3.465V$			150	μΑ
1	Input Low Current	OE0:OE2	$V_{_{DD}} = 3.465V, V_{_{IN}} = 0V$	-150			μΑ
IIL	Input Low Current	IN	$V_{DD} = 3.465V, V_{IN} = 0V$	-5			μΑ
V _{OH}	Output High Voltage; NOTE 1			2.6			V
V _{OL}	Output Low Voltage; NOTE 1					0.5	V
I _{OZL}	Output HiZ Current Low					5	μΑ
I _{OZH}	Output HiZ Current I	High				5	μΑ

NOTE 1: Outputs terminated with 50Ω to $V_{pp}/2$. See Parameter Measurement Information, 3.3V Output Load Test Circuit.

ICS83115

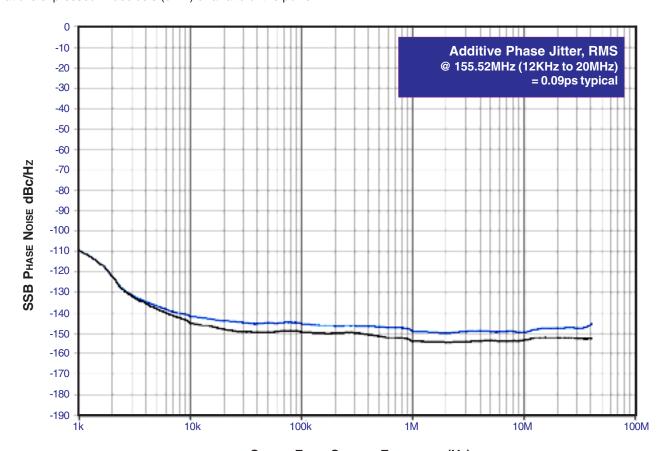
Low Skew, 1-to-16 LVCMOS / LVTTL FANOUT BUFFER

Table 5. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, Ta = 0° to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency				200	MHz
t _{pLH}	Propagation Delay; NOTE 1	<i>f</i> ≤ 200MHz	1.7	2.4	3.1	ns
tjit(∅)	Buffer Additive Phase Jitter, RMS; refer to Additive Phase Jitter Section	Integration Range: 12KHz - 20MHz		0.09		ps
tsk(o)	Output Skew; NOTE 2, 4	Measured on rising edge @V _{DD} /2		150	250	ps
tsk(pp)	Part-to-Part Skew; NOTE 3, 4	Measured on rising edge @V _{DD} /2			800	ps
$t_{\rm R}/t_{\rm F}$	Output Rise/Fall Time	20% to 80%	650		1150	ps
odc	Output Duty Cycle		45		55	%
t _{EN}	Output Enable Time				20	ns
t _{DIS}	Output Disable Time				20	ns

All parameters measured at f_{MAX} unless noted otherwise. NOTE 1: Measured from $V_{DD}/2$ of the input to $V_{DD}/2$ of the output. NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at $V_{DD}/2$.

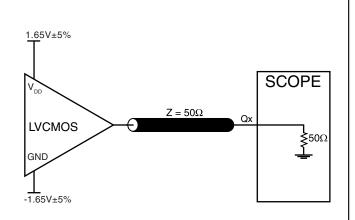
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at $V_{nn}/2$.

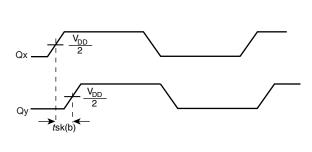

NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.

ADDITIVE PHASE JITTER

The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the *dBc Phase Noise*. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio of the power in

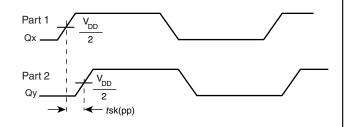
the 1Hz band to the power in the fundamental. When the required offset is specified, the phase noise is called a **dBc** value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.

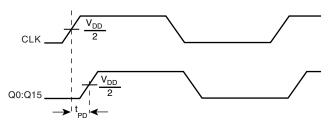



OFFSET FROM CARRIER FREQUENCY (Hz)

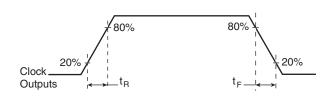
As with most timing specifications, phase noise measurements have issues. The primary issue relates to the limitations of the equipment. Often the noise floor of the equipment is higher than the noise floor of the device. This is illustrated above. The de-

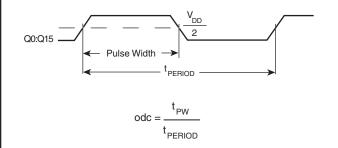
vice meets the noise floor of what is shown, but can actually be lower. The phase noise is dependant on the input source and measurement equipment.


PARAMETER MEASUREMENT INFORMATION



3.3V OUTPUT LOAD AC TEST CIRCUIT


OUTPUT SKEW



PART-TO-PART SKEW

PROPAGATION DELAY

OUTPUT RISE/FALL TIME

OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD

ICS83115 Low Skew, 1-to-16 LVCMOS / LVTTL FANOUT BUFFER

RELIABILITY INFORMATION

Table 6. $\theta_{\text{JA}} \text{vs. Air Flow Table for 28 Lead SSOP, 150MIL}$

 θ_{AA} by Velocity (Linear Feet per Minute)

0

200 500

Multi-Layer PCB, JEDEC Standard Test Boards

49°C/W 36°C/W

30°C/W

NOTE: Most modern PCB designs use multi-layered boards.

TRANSISTOR COUNT

The transistor count for ICS83115 is: 985

PACKAGE OUTLINE - R SUFFIX FOR 28 LEAD SSOP, 150 MIL

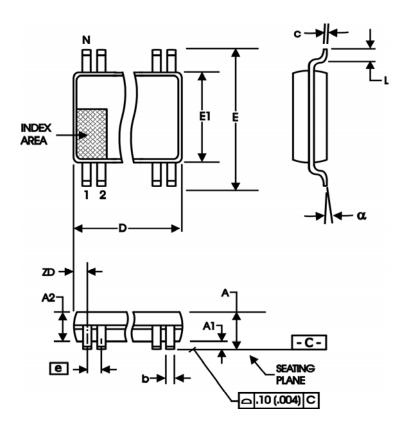


TABLE 7. PACKAGE DIMENSIONS

CVMDOL	Millin	neters	
SYMBOL	Minimum	Maximum	
N	2	8	
А	1.35	1.75	
A1	0.10	0.25	
A2		1.50	
b	0.20	0.30	
С	0.18	0.25	
D	9.80	10.00	
Е	5.80	6.20	
E1	3.80	4.00	
е	0.635 BASIC		
L	0.40	1.27	
α	0°	8°	
ZD	0.84 REF		

Reference Document: JEDEC Publication 95, MO-137

ICS83115

Low Skew, 1-to-16 LVCMOS / LVTTL FANOUT BUFFER

TABLE 8. ORDERING INFORMATION

Part/Order Number	Marking	Package	Count	Temperature
ICS83115BR	ICS83115BR	28 Lead SSOP	48 per tube	0°C to 70°C
ICS83115BRT	ICS83115BR	28 Lead SSOP on Tape and Reel	2500	0°C to 70°C
ICS83115BRLF	ICS83115BRLF	28 Lead "Lead Free" SSOP	48 per tube	0°C to 70°C
ICS83115BRLFT	ICS83115BRLF	28 Lead "Lead Free" SSOP on Tape and Reel	2500	0°C to 70°C

The aforementioned trademark, HiPerClockS™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries. While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.