NPN SiGe RF TRANSISTOR

The DRF1402F is a low cost, NPN medium power SiGe HBT(Hetero-Junction Bipolar Transistor) encapsulated in a plastic SOT-89 SMD package.

The DRF1402F can be used as a driver device or an output device, depending on the specific application

FEATURES

- o 4.8 Volt operation
- o P1dB 28 dBm @f=465MHz
- o Power gain 10 dB @f=465MHz

SOT - 89

APPLICATIONS

 Hand-held radio equipment in common emitter class-AB operation in 450 MHz communication band.

PIN CONFIGURATION

PIN NO	SYMBOL	DESCRIPTION
1	В	base
2	С	collector
3	Е	emitter
4	С	collector

MAXIMUM RATINGS

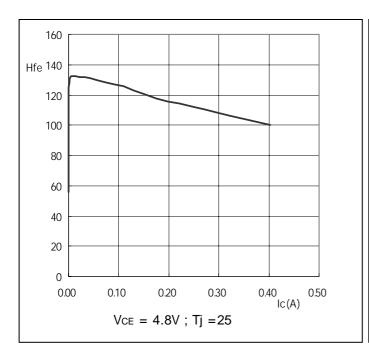
SYMBOL	PARAMETER	CONDITION	VALUE	Unit
Vсво	Collector-Base Voltage	Open Emitter	20	V
Vceo	Collector-Emitter Voltage	Open Base	8	V
VEBO	Emitter-Base Voltage	Open Collector	4	V
Ic	Collector Current (DC)		350	mA
Рт	Total Power Dissipation	Ts = 60 ; note 1	1	W
Тѕтс	Storage Temperature		-65 ~ 150	
TJ	Operating Junction Temperature		150	

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITION	VALUE	Unit
Rth j-s	thermal resistance from junction to soldering point	PT=1W; Ts=60 ;note1	55	K/W

^{*} Note 1. Ts is temperature at the soldering point of the collector pin.

QUICK REFERENCE DATA


RF performance at Ts ≤ 60 in common emitter test circuit (see Fig 8.)

Mode of Operation	f [MHz]	VCE [V]	P∟ [mW]	G _P [dB]	c [%]
CW, class-AB	465	4.8	630	10	60

DC CHARACTERISTICS

Tj=25 unless otherwise specified

SYMBOL	PARAMETER	CONDITION	MIN.	MAX.	UNIT
ВУсво	collector-base breakdown voltage	open emitter	20		V
BVceo	collector-emitter breakdown voltage	open base	8		V
ВVево	emitter-base breakdown voltage	open collector	3		V
Is	Collector leakage current		0.1		mA
hfe	DC current gain		60		
Сс	Collector capacitance			4.5	pF

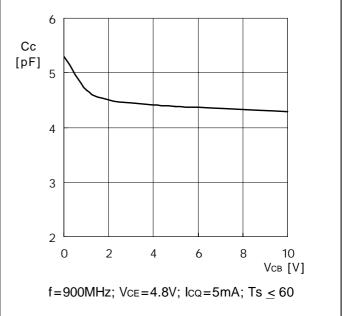
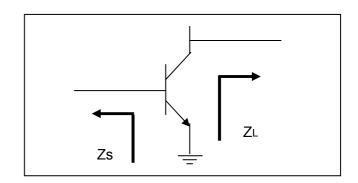


Fig 1. DC Current gain v.s Collector current

Fig 2. Collector-base capacitance v.s Collector-base voltage(DC)

APPLICATION INFORMATION

RF performance at $Ts \le 60$ in common emitter configuration.


Mode of Operation	f [MHz]	VCE [V]	P∟ [mW]	G _P [dB]	c [%]
CW, class-AB	465	4.8	630	10	60

DRF1402F Source/Load Impedance as a frequency

VcE = 4.8V, IcQ = 5mA, Pout = 28dBm

Freq.	Z _S [Ω]		Z∟[Ω]	
[MHz]	Rs	Xs	RL	XL
440	17.34	6.91	22.21	-0.59
450	17.21	7.89	19.31	2.58
460	17.12	8.90	17.20	7.07
470	17.09	9.95	15.66	19.00

DRF1402F Transister Impedance

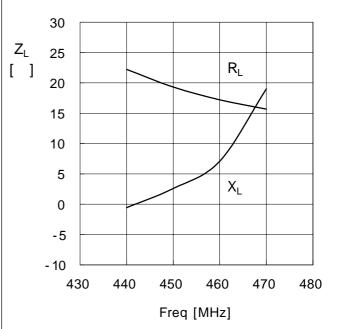
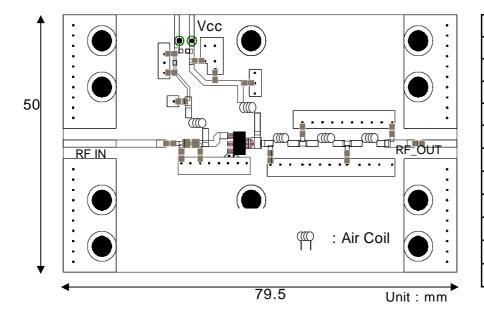



Fig 5. Source Impedance (series components) as a freq, typical values.

Fig 6. Load Impedance (series components) as a freq, typical values.

Part List					
C1, C7,C10,C11	470pF				
C3,C4	6pF				
C2	8pF				
C5	7pF				
C6	12pF				
C9,C12	1nF				
C8,C13	100nF				
L1(Chip L : 1608)	8.2nH				
L2,L3,L4 (Air Coil)	3turn				
L5,L6 (Air Coil)	8turn				
Air Coil Diameter	2 mm				

Fig 7. DRF1402F Test Circuit Board Layout @ f = 465MHz

Test board : FR4 glass epoxy board, dielectric constant = 4.5, thickness = 0.8 mm

Test condition: CW test, Vcc = 4.8 V, Icq = 5 mA, frequency = 465 MHz.

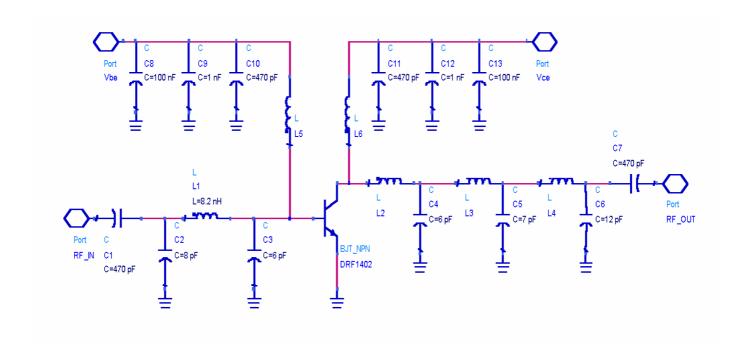


Fig 8. Test Circuit Schematic Diagram @f = 465MHz

PACKAGE DIMENSION

OUTLINE DRAWING 4.50 177 0.41 .006 mm inch 9299 1009 TOP VIEW 뾽 蝹 LAND PATTERN MOUNTING CONFIGURATION 號。 虢 Ö PACKAGE OUTLINE 0 0.38 AP3

Fig 9. SOT-89 Package dimension