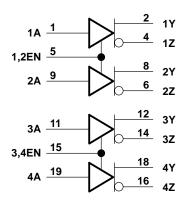

- Designed for TIA/EIA-485, TIA/EIA-422 and ISO 8482 Applications
- Signaling Rates[†] up to 30 Mbps
- Propagation Delay Times < 11 ns
- Low Standby Power Consumption
 1.5 mA Max
- Output ESD Protection Exceeds 13 kV

- Driver Positive- and Negative-Current Limiting
- Power-Up and Power-Down Glitch-Free for Line Insertion Applications
- Thermal Shutdown Protection
- Industry Standard Pin-Out, Compatible With SN75174, MC3487, DS96174, LTC487, and MAX3042

description

The SN65LBC174A and SN75LBC174A are quadruple differential line drivers with 3-state outputs, designed for TIA/EIA-485 (RS-485), TIA/EIA-422 (RS-422), and ISO 8482 applications.


These devices are optimized for balanced multipoint bus transmission at signalling rates up to 30 million bits per second. The transmission media may be printed-circuit board traces, backplanes, or cables. The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media and the noise coupling to the environment.

(TOP VIEW) 10 ⊐ v_{cc} 1A □ 2 19 1Y 4A 3 18 NC \square 17 1Z 🖂 4 □ NC 5 1.2EN □ 16 TT 47 6 15 2Z 🞞 NC \square 7 14 **□** 3Z 2Y 🗆 8 13 ☐ NC 9 12 **Ⅲ** 3Y 2A 🗆 GND □ 10 **□** 3A 11

20-DW PACKAGE

logic diagram (positive logic)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

†The signaling rate of a line is the number of voltage transitions that are made per second expressed in the units bps (bits per second).

SN65LBC174A, SN75LBC174A QUADRUPLE RS-485 DIFFERENTIAL LINE DRIVERS

SLLS446C - OCTOBER 2000 - REVISED MAY 2003

description (continued)

Each driver features current limiting and thermal-shutdown circuitry making it suitable for high-speed multipoint applications in noisy environments. These devices are designed using LinBiCMOS $^{\text{\tiny M}}$, facilitating low power consumption and robustness.

The two EN inputs provide pair-wise driver enabling, or can be externally tied together to provide enable control of all four drivers with one signal. When disabled or powered off, the driver outputs present a high-impedance to the bus for reduced system loading.

The SN75LBC174A is characterized for operation over the temperature range of 0°C to 70°C. The SN65LBC174A is characterized for operation over the temperature range of –40°C to 85°C.

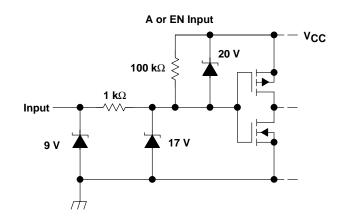
AVAILABLE OPTIONS

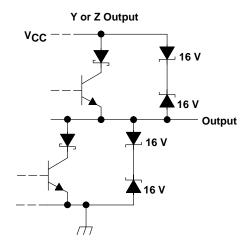
	PACKAGE				
TA	16-PIN PLASTIC SMALL OUTLINE [†] (JEDEC MS-013)	20-PIN PLASTIC SMALL OUTLINE [†] (JEDEC MS-013)	16-PIN PLASTIC THROUGH-HOLE (JEDEC MS-001)		
0°C to 70°C	SN75LBC174A16DW	SN75LBC174ADW	SN75LBC174AN		
	Marked as 75LBC174A				
-40°C to 85°C	SN65LBC174A16DW	74A16DW SN65LBC174ADW SN65LBC174A			
		Marked as 65LBC174A			

[†] Add R suffix for taped and reeled version.

FUNCTION TABLE (EACH DRIVER)

INPUT	ENABLE	OUTPUTS	
Α	G	Y	Z
L	Н	L	Н
Н	Н	Н	L
OPEN	Н	Н	L
L	OPEN	L	Н
Н	OPEN	Н	L
OPEN	OPEN	Н	L
Х	L	Z	Z


H = high level, L = low level, X = irrelevant,


LinBiCMOS is a trademark of Texas Instruments.

Z = high impedance (off)

equivalent input and output schematic diagrams

absolute maximum ratings†

Supply voltage range, V _{CC} (see Note 1)		
Voltage range at any bus (transient pulse through 100 Ω , see F	igure 8)	
Input voltage range at any A or EN terminal, V _I		0.5 V to V_{CC} + 0.5 V
Electrostatic discharge: Human body model (see Note 2)	Y, Z, and GND	13 kV
	All pins	5 kV
Charged-device model (see Note 3)	All pins	1 kV
Storage temperature range, T _{Stq}		–65°C to 150°C
Continuous power dissipation		See Dissipation Rating Table
Lead temperature 1,6 mm (1/16 inch) from case for 10 secon	nds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential I/O bus voltages, are with respect to GND.

- 2. Tested in accordance with JEDEC standard 22, Test Method A114-A.
- 3. Tested in accordance with JEDEC standard 22, Test Method C101.

DISSIPATION RATING TABLE

PACKAGE	JEDEC BOARD MODEL	T _A ≤ 25°C POWER RATING	DERATING FACTOR‡ ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
46 DIN DW	Low K	1200 mW	9.6 mW/°C	769 mW	625 mW
16-PIN DW	High K	2240 mW	17.9 mW/°C	1434 mW	1165 mW
OO DIN DW	Low K	1483 mW	11.86 mW/°C	949 mW	771 mW
20-PIN DW	High K	2753 mW	22 mW/°C	1762 mW	1432 mW
16-PIN N	Low K	1150 mW	9.2 mW/°C	736 mW	598 mW

[‡] This is the inverse of the junction-to-ambient thermal resistance when board-mounted with no air flow.

SN65LBC174A, SN75LBC174A QUADRUPLE RS-485 DIFFERENTIAL LINE DRIVERS

SLLS446C - OCTOBER 2000 - REVISED MAY 2003

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}			5	5.25	V
Voltage at any bus terminal	Y, Z	-7		12	V
High-level input voltage, VIH				VCC	.,
Low-level input voltage, V _{IL}	A, EN	0		8.0	V
Output current		-60		60	mA
On another force statement and T	SN75LBC174A	0		70	00
Operating free-air temperature, T _A	SN65LBC174A	-40		85	°C

electrical characteristics over recommended operating conditions

PARAMETER		TEST CONDITIONS		MIN	TYP†	MAX	UNIT
VIK	Input clamp voltage	I _I = -18 mA	I _I = -18 mA		-0.77		V
٧o	Open-circuit output voltage	Y or Z, No load		0		VCC	V
		No load (open circuit)		3		Vcc	
VOD(SS)	Steady-state differential output voltage magnitude‡	R_L = 54 Ω, See Figure 1		1	1.6	2.5	V
. ,	voltage magnitude i	With common-mode loa	ding, See Figure 2	1	1.6	2.5	
ΔV _{OD} (SS)	Change in steady-state differential output voltage between logic states	See Figure 1		-0.1		0.1	V
VOC(SS)	Steady-state common-mode output voltage	See Figure 3		2	2.4	2.8	V
ΔV _{OC} (SS)	Change in steady-state common-mode output voltage between logic states	See Figure 3		-0.02		0.02	V
II	Input current	A, G, G	A, G, \overline{G}			50	μΑ
IOS	Short-circuit output current		VI = VCC	-200		200	mA
loz	High-impedance-state output current	VTEST = -7 V to 12 V, See Figure 7	EN at 0 V	-50		50	μА
IO(OFF)	Output current with power off		VCC = 0 V	-10		10	
1	Complete company	$V_I = 0 \text{ V or } V_{CC}$	All drivers enabled			23	A
ICC	Supply current	No load	All drivers disabled			1.5	mA

[†] All typical values are at $V_{CC} = 5 \text{ V}$ and 25°C .

[‡] The minimum V_{OD} may not fully comply with TIA/EIA-485-A at operating temperatures below 0°C. System designers should take the possibly of lower output signal into account in determining the maximum signal transmission distance.

SN65LBC174A, SN75LBC174A QUADRUPLE RS-485 DIFFERENTIAL LINE DRIVERS

SLLS446C - OCTOBER 2000 - REVISED MAY 2003

switching characteristics over recommended operating conditions

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low-to-high level output		5.5	8	11	ns
tPHL	Propagation delay time, high-to-low level output		5.5	8	11	ns
t _r	Differential output voltage rise time		3	7.5	11	ns
tf	Differential output voltage fall time	$R_L = 54 \Omega$, $C_L = 50 pF$,	3	7.5	11	ns
	Pulse skew tpLH - tpHL	See Figure 4		0.6	2	
^t sk(p)				0.6	2	ns
tsk(o)	Output skew [†]				2	ns
tsk(pp)	Part-to-part skew [‡]				3	ns
^t PZH	Propagation delay time, high-impedance-to-high-level output	0 5			25	ns
^t PHZ	Propagation delay time, high-level-output-to-high impedance	See Figure 5			25	ns
t _{PZL}	Propagation delay time, high-impedance-to-low-level output	See Figure 6			30	ns
tPLZ	Propagation delay time, low-level-output-to-high impedance	See Figure 0			20	ns

[†] Output skew (t_{sk(o)}) is the magnitude of the time delay difference between the outputs of a single device with all of the inputs connected together. ‡ Part-to-part skew (t_{sk(pp)}) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same input signals, the same supply voltages, at the same temperature, and have identical packages and test

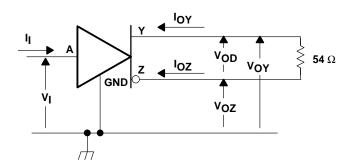


Figure 1. Test Circuit, V_{OD} Without Common-Mode Loading

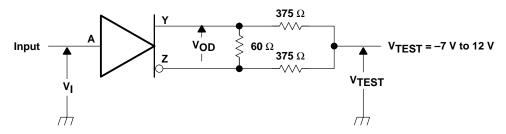
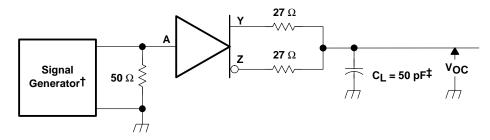
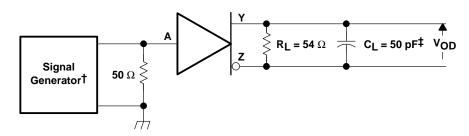




Figure 2. Test Circuit, V_{OD} With Common-Mode Loading

† PRR = 1 MHz, 50% duty cycle, t_{f} < 6 ns, t_{f} < 6 ns, Z_{O} = 50 Ω ‡ Includes probe and jig capacitance

Figure 3. V_{OC} Test Circuit

 † PRR = 1 MHz, 50% duty cycle, t_{f} < 6 ns, t_{f} < 6 ns, Z_{O} = 50 Ω

[‡] Includes probe and jig capacitance

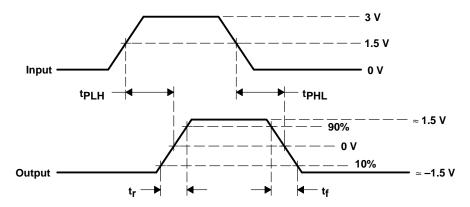
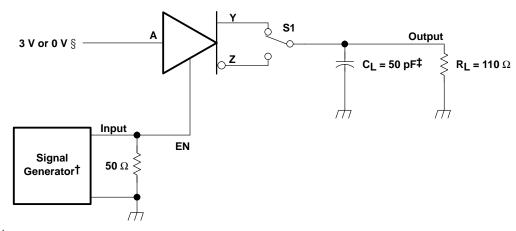



Figure 4. Output Switching Test Circuit and Waveforms

† PRR = 1 MHz, 50% duty cycle, t_r < 6 ns, t_f < 6 ns, Z_O = 50 Ω

‡ Includes probe and jig capacitance

§ 3 V if testing Y output, 0 V if testing Z output

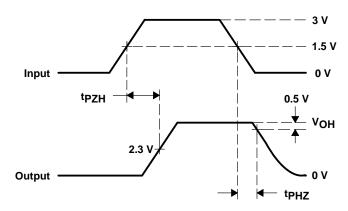
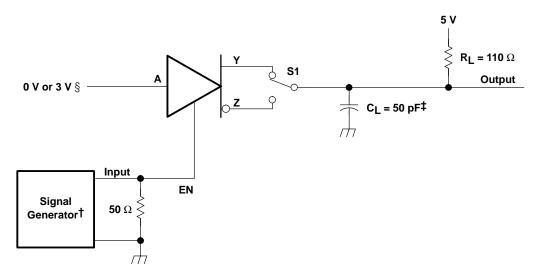



Figure 5. Enable Timing Test Circuit and Waveforms, tpzH and tpHZ

 $^{^{\}dagger}$ PRR = 1 MHz, 50% duty cycle, t_{f} < 6 ns, t_{f} < 6 ns, Z_{O} = 50 Ω

^{§ 3} V if testing Y output, 0 V if testing Z output

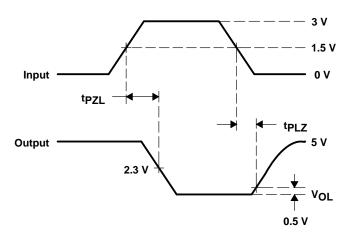


Figure 6. Enable Timing Test Circuit and Waveforms, tpzL and tpLZ

[‡] Includes probe and jig capacitance

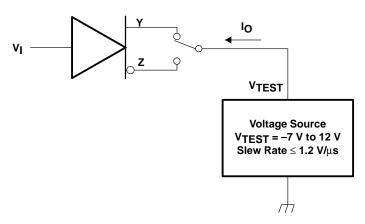
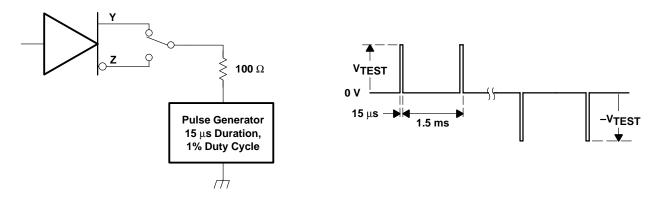
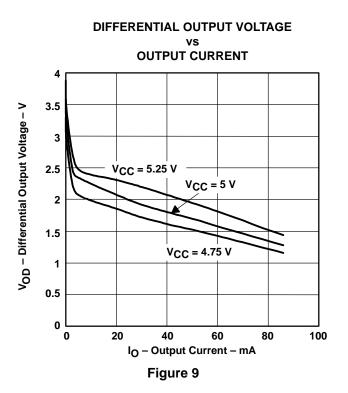
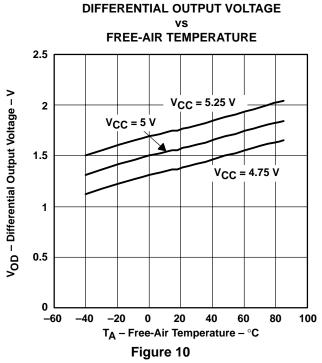
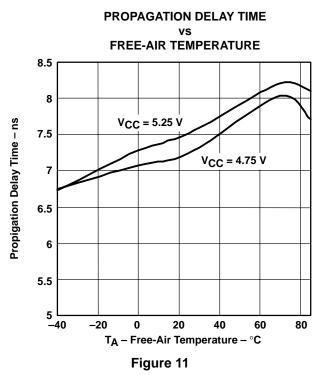
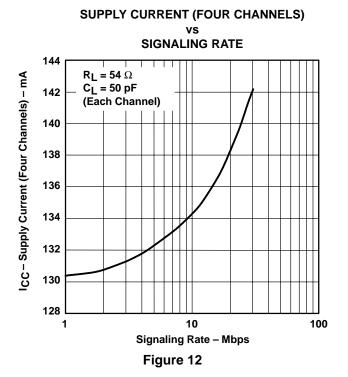


Figure 7. Test Circuit, Short-Circuit Output Current


Figure 8. Test Circuit Waveform, Transient Over-Voltage Test

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

DIFFERENTIAL OUTPUT VOLTAGE vs SUPPLY VOLTAGE

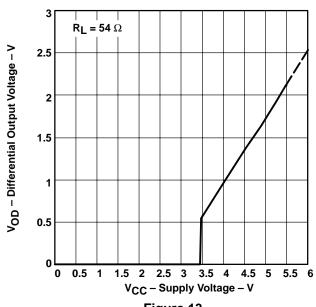


Figure 13

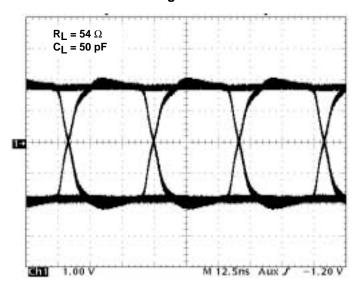
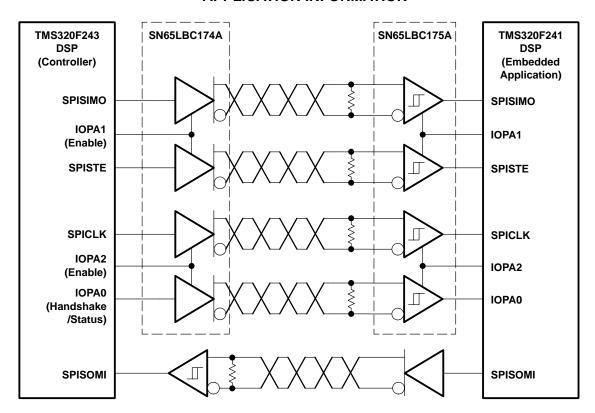
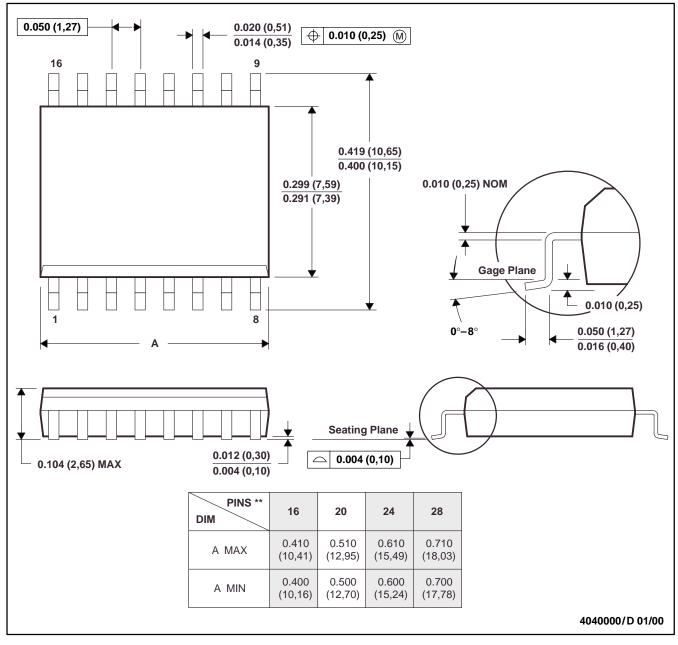


Figure 14. Eye Pattern, Pseudorandom Data at 30 Mbps

APPLICATION INFORMATION




Figure 15. Typical Application Circuit, DSP-to-DSP Link via Serial Peripheral Interface

MECHANICAL DATA

DW (R-PDSO-G**)

16 PINS SHOWN

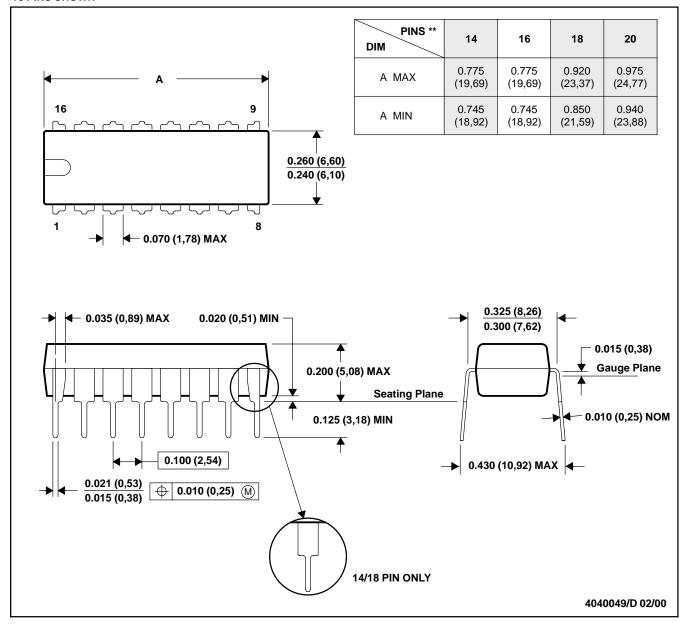
PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013



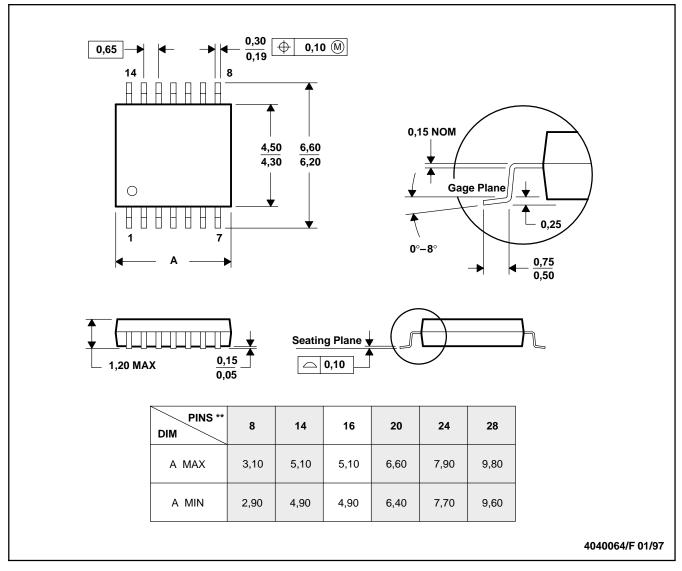
MECHANICAL DATA

N (R-PDIP-T**)

16 PINS SHOWN

PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 (20-pin package is shorter than MS-001).

MECHANICAL DATA

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated