

TPI8011N TPI12011N

Application Specific Discretes A.S.D.™

TRIPOLAR PROTECTION FOR ISDN INTERFACES

FEATURES

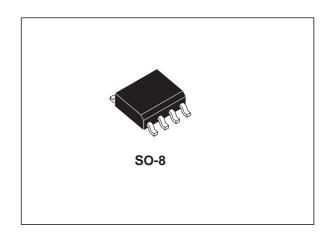
- BIDIRECTIONAL TRIPLE CROWBAR PROTECTION.
- PEAK PULSE CURRENT : $I_{PP} = 30 \text{ A}$, $10/1000 \, \mu s$.
- BREAKDOWN VOLTAGE:

TPI80xxN: 80V TPI120xxN: 120V.

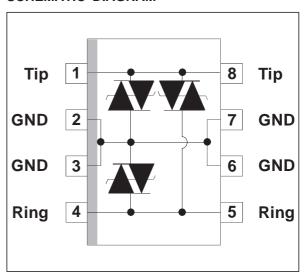
- AVAILABLE IN SO-8 PACKAGES.
- LOW DYNAMIC BREAKOVER VOLTAGE:

TPI80N: 150V TPI120: 200V

DESCRIPTION


Dedicated devices for ISDN interface and high speed data telecom line protection. Equivalent to a triple TRISIL with low capacitance.

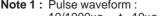
These devices provide:


- low capacitance from lines to ground, allowing high speed transmission without signal attenuation.
- good capacitance balance between lines in order to ensure longitudinal balance.
- fixed breakdown voltage in both common and differential modes.
- the same surge current capability in both common and differential modes.
- A particular attention has been given to the internal wire bonding. The "4-point" configuration ensures a reliable protection, eliminating overvoltages introduced by the parasitic inductances of the wiring (Ldi/dt), especially for very fast transient overvoltages.

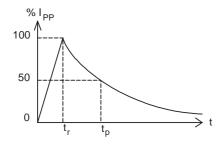
COMPLIES WITH THE FOLLOWING STANDARDS:

CCITT K17 - K20	10/700 μs	1.5	kV
	5/310 μs	38	A
VDE 0433	10/700 μs	2	kV
	5/310 μs	50	A
VDE 0878	1.2/50 μs	1.5	kV
	1/20 μs	40	A
CNET	0.5/700 μs	1.5	kV
	0.2/310 μs	38	A

SCHEMATIC DIAGRAM


TM: ASD is a trademark of STMicroelectronics.

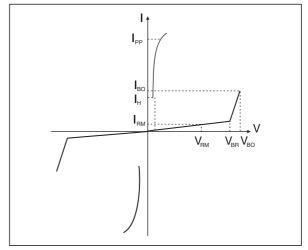
August 2001- Ed : 3A 1/7


TPI8011N/TPI12011N

ABSOLUTE MAXIMUM RATINGS $(T_{amb} = 25 \text{ °C})$

Symbol	Parameter	Value	Unit	
I _{PP}	Peak pulse current (see note 1) 10/1000 μs 5/320 μs 2/10 μs		30 40 90	A
I _{TSM}	Non repetitive surge peak on-state $tp = 10 \text{ ms}$ current (F = 50 Hz). $t = 1 \text{ s}$		8 3.5	А
T _{stg} T _j	Storage temperature range Maximum junction temperature	- 55 to + 150 150	°C	
TL	Maximum lead temperature for soldering	260	°C	

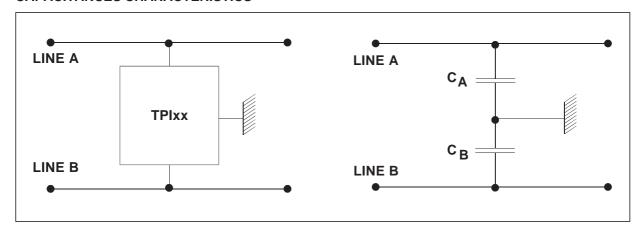
 $\begin{array}{cccc} \textbf{Note 1:} & \text{Pulse waveform:} \\ & 10/1000 \mu s & t_r \!\!=\!\! 10 \mu s \\ & 5/310 \mu s & t_r \!\!=\!\! 5 \mu s \\ & 2/10 \mu s & t_r \!\!=\!\! 2 \mu s \\ \end{array}$ $t_p = 1000 \mu s$ $t_p = 310 \mu s$ $t_p = 10 \mu s$


THERMAL RESISTANCES

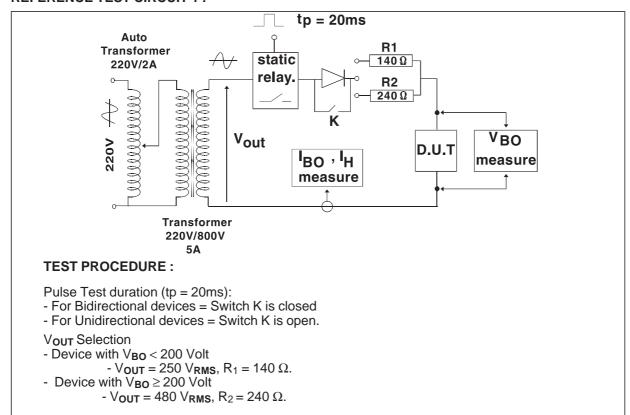
Symbol	Parameter		Value	Unit
R _{th (j-a)}	Junction to ambient	SO-8	170	°C/W

2/7

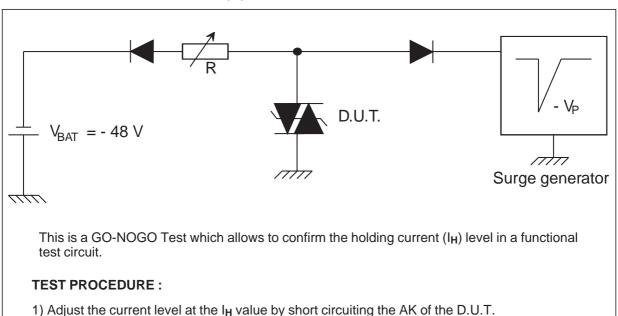
ELECTRICAL CHARACTERISTICS (Tamb = 25 °C)


Symbol	Parameter		
V _{RM}	Stand-off voltage		
I _{RM}	Leakage current		
V_{BR}	Breakdown voltage		
V _{BO}	Breakover voltage		
lμ	Holding current		
I _{BO}	Breakover current		
I _{PP}	Peak pulse current		
VF	Forward Voltage Drop		
С	Capacitance		

	I _{RM} (2 V _{RM}	V BR	@ I _R	V _{BO}	VBO dyn.	I _{BO}	I _H
Types	max.		min.		max.	typ.	max.	min.
					note1	note2	note1	note3
	μΑ	V	V	mA	V	V	mA	mA
TPI8011N	10	70	80	1	120	150	800	150
TPI12011N	10	105	120	1	180	200	800	150


Note 1 : See the reference test circuit 1. Note 2 : Surge test according to CCITT 1.5kV,10/700 μ s between Tip or Ring and ground. Note 3 : See functional holding current test circuit 2.

CAPACITANCES CHARACTERISTICS


CONFIGURATION	C _A (pF) max	С _в (pF) max	C _A - C _B (pF) max
V _A =1V V _B =56V	70	50	30
V _A = 56V V _B = 1V	50	70	30

REFERENCE TEST CIRCUIT 1:

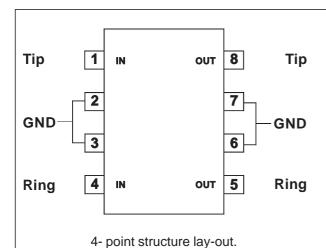
FUNCTIONAL HOLDING CURRENT (IH) TEST CIRCUIT 2:

2) Fire the D.U.T with a surge Current : Ipp = 10A , $10/1000~\mu s$. 3) The D.U.T will come back off-state within 50 ms max.

10 F=50Hz
Tj initial=25°C 9 8 7 6 5 4 3 2 t(s)

1E+1

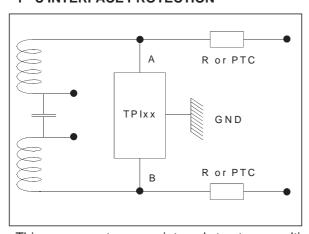
1E+2

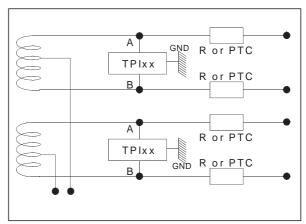

1E+3

1E+0

Fig. 1: Surge peak current versus overload duration.

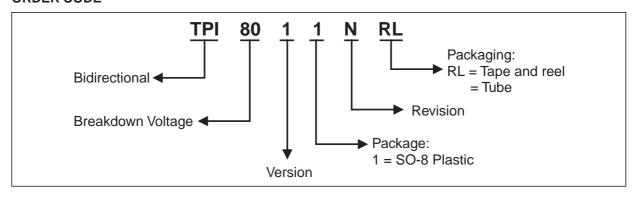
1E-1 APPLICATION NOTE.


0 └ 1E-2


- 1) Connect pins 2, 3, 6 and 7 to ground in order to guarantee a good surge current capability for long duration disturbances.
- 2) In order to take advantage of the "4-point" structure of the TPIxxxN, the Tip and Ring lines have to cross the device. In this case, the device will eliminate the overvoltages generated by the parasitic inductances of the wiring (Ldi/dt), especially for very fast transients.

APPLICATION CIRCUITS:

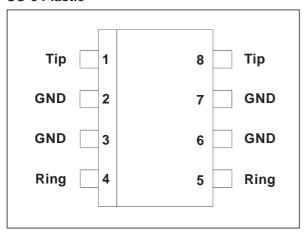
1 - U INTERFACE PROTECTION


2 - S INTERFACE PROTECTION

This component uses an internal structure resulting in symetrical characteristics with a good balanced behaviour. Its topology ensures the same breakdown voltage level for positive and negative surges in differential and common mode.

TPI8011N/TPI12011N

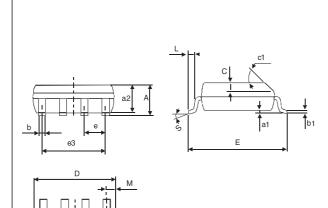
ORDER CODE



MARKING

Package	Туре	Marking
SO-8	TPI8011N TPI12011N	TP80N TP120N

CONNECTION DIAGRAM


SO-8 Plastic

6/7

PACKAGE MECHANICAL DATA

SO-8 Plastic

	DIMENSIONS					
REF.	Millimetres			;		
	Min. Typ.		Max.	Min.	Тур.	Max.
Α			1.75			0.069
a1	0.1		0.25	0.004		0.010
a2			1.65			0.065
b	0.35		0.48	0.014		0.019
b1	0.19		0.25	0.007		0.010
С		0.50			0.020	
c1			45°	(typ)		
D	4.8		5.0	0.189		0.197
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
еЗ		3.81			0.150	
F	3.8		4.0	0.15		0.157
L	0.4		1.27	0.016		0.050
М			0.6			0.024
S	8° (max)					

Packaging: Products supplied in antistatic tubes

or tape and reel. Weight: 0.08g

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written ap-

proval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

