网站首页
IC库存
IC展台
电子资讯
技术资料
PDF文档
我的博客
IC72论坛
ic72 logo
搜索关键字: 所有资讯 行业动态 市场趋势 政策法规 新品发布 技术资讯 价格快报 展会资讯
  • 达普IC芯片交易网 > 新闻中心 > 新品发布 > 正文
  • RSS
  • Vishay推出超高精度Z箔表面贴装电流感应芯片电阻器
    http://www.ic72.com 发布时间:2013/4/18 15:00:46


        Vishay宣布其威世箔电阻品牌(目视)发布了一个新的超高精密z箔表面电流传感芯片电阻器,是这个行业的第一个这样的装置结合高额定功率为1 W + 70°C和低的TCR±0.2 ppm /°C从-55°C,典型+ 125°C,+ 25°C ref。通过驱散高达1 W 1625包大小,VCS1625ZP允许设计者使用一个单一的装置测量大电流比之前可能的。


        Vishay Precision Group, Inc. announced that its VishayFoil Resistors brand (VFR) has released a new ultra-high-precision Z-Foil surface-mount current sensing chip resistor that is the industry’s first such device to combine a high power rating of 1 W at +70°C and low TCR of ±0.2 ppm/°C typical from -55°C to +125°C, +25°C ref. By dissipating up to 1 W in the 1625 package size, the VCS1625ZP allows designers to use a single device to measure larger currents than previously possible. For high-power applications, the device offers tight tolerances to ±0.2% (0.1% and 0.05% are available) and a four-terminal Kelvin configuration for increased accuracy.


        The VCS1625ZP features a power coefficient (ΔR due to self-heating) of 5 ppm at rated power, a thermal stabilization time of <1 ns (nominal value achieved within 10 ppm of steady state value), and a wide resistance range from 0.3 Ω to 10 Ω. Any resistance value within this range is available at any tolerance with no additional cost or lead time effect. The resistor offers a rise time of 1.0 ns with effectively no ringing, short time overload of <0.005% (50 ppm), current noise of 0.010 µVrms/V of applied voltage (<-40 dB), and a voltage coefficient of <0.1 ppm/V.


        Offering the utmost in electrostatic discharge (ESD) immunity, the device withstands ESD to at least 25 kV, for increased reliability, and offers a non-inductive (<0.08 μH), non-capacitive design. The Bulk Metal® Foil technology of the VCS1625ZP provides a significant reduction of the resistive component’s sensitivity to ambient temperature variation (TCR) and to the self-heating effect caused by changing loads. This allows designers to guarantee a high degree of stability and accuracy in fixed-resistor applications. In addition, the resistor’s design results in a very low thermal EMF of 0.05 μV/°C typical, which is critical in precision applications.


        The VCS1625ZP’s load-life stability of 0.015% at +70°C for 2000 hours at rated power is an order of magnitude better than typical current sensing resistors. The device’s improved stability makes it ideal for tightened-stability reference voltage and precision current sensing applications in forced-balance electronic scales, measurement instrumentation, bridge networks, motor controllers, and medical and test equipment. In addition, the resistor can be tested in accordance with EEE INST 002 (MIL PRF 55342) for military and space applications.


        The all-welded construction of the VCS1625ZP is composed of a Bulk Metal Foil resistive element with plated copper terminations. The flat terminations make intimate contact with the resistive layer along the entire side of the resistive element, thereby minimizing temperature variations. In addition to the low thermal EMF compatibility of the device’s metals, the uniformity and thermal efficiency of the design minimize the temperature differential across the resistor, thereby assuring low thermal EMF generation at the terminations. This further reduces the thermal EMF voltage, or “battery effect,” exhibited by most current sensing or voltage reference resistors.


        The device released today is characterized by extremely low excess noise when compared with other resistor technologies. Additionally, the current in adjacent current carrying paths runs in opposing directions, cancelling the parasitic inductance of these paths. Also, path-to-path capacitances are connected in series, which has the effect of minimizing the parasitic capacitance of the resistor. The low-inductance/capacitance device is characterized by non-measurable peak-to-peak signal distortions.


        The VCS1625ZP is available with tin/lead or lead (Pb)-free gold or tin termination options, and with additional post-manufacturing operations (PMO) to extend the operating temperature from +150°C to well above +200°C.


        Samples and production quantities of the VCS1625ZP are available now, with lead times of five working days for samples and eight weeks for standard orders. Pricing for U.S. delivery starts at 4.05.
     


    www.ic72.com 达普IC芯片交易网
  • 行业动态
  • 市场趋势
  • 政策法规
  • 新品发布
  • Baidu

    IC快速检索:abcdefghijklmnopqrstuvwxyz0123456789
    COPYRIGHT:(1998-2010) IC72 达普IC芯片交易网
    客户服务:service@IC72.com 库存上载:IC72@IC72.com
    (北京)联系方式: 在线QQ咨询:点击这里给我发消息 联系电话:010-82614113 传真:010-82614123
    京ICP备06008810号-21 京公网安备 11010802032910 号 企业资质