1 典型的非接触通用供电平台
基本的电流馈送并联谐振型非接触通用供电平台如图1所示。由直流电感Ld、分裂电感Lsp与两个MOS开关器件M1,M2组成推挽式电流馈送电路,驱动一个由原边电容C1、电感L1组成的并联谐振电路;n个L2,C2构成的并联谐振电路,组成向等效负载RLn传输功率的拾取电路(pick up),n为负载的个数。
以单个负载为例进行分析,拾取端开路电压为VOC,M为原副边的互感,I1为原边线圈上的电流,则有:
为了便于对电路进行分析,根据等效原则对拾取侧进行串并转换,将与所构成的并联电路转换成电阻Rs与电容Cs的串联,则有:
这里,Q2=ωC2RL为副边的品质因数。那么,副边的阻抗Z2就为:
由式(1),拾取侧的短路电流ISC为:
在选取副边补偿电容C2时,使其与副边电感L2构成谐振,在拾取线圈上的电压V2为:
负载上的最大功率只与原边电流,原副边间的互感以及副边线圈的自感有关。
通常情况下副边电感L2上的电流为:
副边拾取侧映射到原边的电压Vr为:
在谐振的状况下,副边电感与补偿电容相互消除,副边阻抗可以简化为一个纯电阻Rs,则映射电压Vr的幅值可表示为:
从式(7),式(10)可以看出,负载RL的值越大,副边拾取侧映射到原边线圈上的映射电压就越大,该负载上获取的功率也就越大。因此,在多负载的情况下,当某一负载轻载时,也即是RL值突然变大或者波动较大时,就很容易阻碍供电平台上的其他用电设备获取足够的功率,进而导致整个系统的崩溃;同时,轻载的负载也将导致系统的运行频率不稳,以至于其他的用电设备由于不能工作于谐振频率而不能获取足够的功率。
2 动态解谐控制实现
考虑到多负载非接触通用供电平台的实际特点,采用动态解谐的解决方案,如图2所示,该电路由一个定值电感和一个可变电容组成。负载的变动将导致输出电压Vo的变化以及功率的改变,因此,动态解谐谐控制主要是流入负载的输出电流的大小。
并联解谐控制的简化模型如图3所示,当电路解谐时,电感和电容的电抗都将随之改变。此时,负载上的电流可以表示为:
为了进一步说明负载电流和电容值的变化关系,根据图3给出如下关系式(12):
其中:R表示负载,C表示可变电容,L是拾取线圈电感,VOC是感应的开路电压,IR是负载电流,ω是谐振频率。由式(12)可以看出,如果其他参数如R,L,VOC,ω等都固定不变时,那么负载电流将随电容值的变化而变化,如图4所示。只有在电容的谐振值这一点负载电流值最大,当电容值偏离谐振点电容越大,负载电流的下降也越大。因此,可以采用两种方法来达到电路失谐,控制电流大小的目的,根据可变电容值与谐振点电容值的比较,可变电容小被定义为欠调谐控制和可变电容大被定义为过调谐控制。本文只以欠调谐控制为例来说明动态解谐方法。式(12)给出的是负载电流与可变电容之间的关系,其中负载是一个给定的不变量,而实际设计当中,主要考虑的是负载变动与可变电容之间的关系,如式(13):
其中:Vo是流经负载的输出电压,R是负载,L是拾取线圈电感,ω是谐振频率,VOC是拾取端感应的开路电压,C是可变电容。在给定的输出电压Vo的前提下,由式(13)可以计算出不同负载下的电容值。因此,可以采用电容在可控的开关频率下开启与关断来等效电容值的变化,具体电路如图5所示。
其中,在该电路中,电容开关控制依据负载输出DC电压反馈与给定的期望电压参考值相比较的结果,产生控制电容开关的输出信号。同时,在可控频率下开关电容Ct开关能够在负载上产生一个所需要的平均电流;而位于开关电容前面的固定电容Cs的作用是为启动电容开关电路提供最小的启动功率。
系统的设计参数为额定谐振频率40 kHz,拾取侧感应开路电压的峰值5.18V,副边线圈电感15.4μH,负载上的输出电压设定为15 V。由式(14)可以求出固定电容值为0.673μH,相应的开关电容值就等于谐振电容值减去固定电容的值,也就是0.357μH。图6给出了负载轻载时,开关电容、固定电容、开关电容驱动信号以及输出负载上的电压波形。图7和图8给出的是动态欠调谐控制下,负载变化上时的输出电压波形及负载上的输出功率情况。从图中可以看出,轻载时,开关电容开关频率较低,该电路尽量保持解谐状态来限制负载上的电压大小,使电压稳定在15 V;同时,输出功率并没有随着负载轻载运行而增加,而相应地有所减少,消除了对其他用电器的功率影响,避免了系统的崩溃。
3 结 语
本文以非接触通用供电平台为对象,研究系统中单个负载突然变动或波动较大时,对其他用电器的功率影响的问题,利用一种新颖自维持动态解谐控制方法,无需额外的控制电路,结构简单,且能够使负载的输出电压稳定在一个给定的期望值。最后,PSpice仿真实验结果证明了该方法的可行性和有效性。