与纵向记录方式进行一下比较:采用纵向记录技术时,假想1和0相间的最高密度比特样式,相邻磁粒会以头对头、尾对尾的形式排列,在这种情况下,每个磁块互相排斥,遇到高温波动时,磁粒就会变得很不稳定;但在垂直记录技术中,磁粒一上一下垂直摆放,这时磁粒的极性方向就垂直于磁盘表面,采用了这种巧妙的方式,磁单元在磁盘表面上占的面积就减小了,在单位面积上的磁粒也就更多,等同于可以进一步提高存储容量;更重要的是,当磁单元被写入信息后,它将做180度的反转,这样就与相邻的磁单元变成了S-N的邻接方式,这种相邻的垂直比特(数据)就起到了互相稳定的作用,磁粒排列更加紧密,因此数据丢失的可能性就大大减小了。
为了满足垂直记录的要求,在整个垂直记录方式的硬盘盘面上,磁盘的记录层需要比纵向记录层的厚度要厚,这样每个微粒需要更大能量才能改变它的不同方向,小型磁粒也就更能抵御超顺磁现象的不利影响;而在硬记录层下面,还要加上一层软磁底层,这样做的目的就是让磁头可以提供更强的磁场,从而能够以更高的稳定性将数据写入介质当中。
目前,各大硬盘厂商纷纷看好这一技术并进行大力投入,日立存储宣布,他们采用这项技术已经实现了存储密度达到230Gbit/平方英寸,希捷、东芝、富士通、TDK等厂商也实现了100Gbit/平方英寸以上的存储密度。
这项技术虽然已经实用化,但一些技术难题仍然在探索当中。例如,试图发明新的读写磁头、试验一些具有更高磁化特性和表面经过改良的新材料、根据日益微小的磁化比特和信号维持噪音比率等等。
下一代记录技术展望
晶格介质记录
磁头的写入单位是由磁粒组成的磁单元,在同一磁道上极性相反的相邻磁单元之间的边界称为磁变换,通过比特单元是否包括磁变换来进行数据记录。既要准确探测到磁变换,又要避免超顺磁效应的影响,减小写入单位的尺寸是实现提高存储密度的方式之一,这就是晶格介质技术。
其基本原理就是,生成小尺寸、有序排列的“单畴磁岛”作为写入单位,通过这种技术的存储密度可以达到传统垂直记录的大约两倍。而且由于每个岛都是一个单磁畴,所以晶格介质的热稳定性也很好,几乎不会受到超顺磁效应的影响。
现在的光刻技术已经能够实现制造磁岛,这其中需要用到电子束刻蚀技术和纳米刻印复制技术,前者用于制造后者的模板,后者则将图样翻版到硬盘盘片的基板之上。在磁变换的过程当中,当被写入数据以后,磁岛必须保持单畴,这样数据才不会丢失,因此,除了制造工艺要取得突破以外,还需要磁头技术的配合。晶格介质记录这项技术目前还需要进行大量的实用化研究。
热辅助磁记录
前文提到过高矫顽力磁介质的使用,可以进一步减小磁粒尺寸。之所以过去的技术推广程度不高,是因为使用这种介质时,磁头写入需要极强的磁场,不仅使得磁头制造困难,而且也会对相邻区域的数据稳定性有一定影响。
现在,一种全新的记录方式可以有效解决这个问题----热辅助磁记录。其原理就是采用激光作为辅助,在写入介质时,使用激光照射写入点,这样磁头就可以利用热能,从而在磁场强度小的情况下也能顺利进行写入操作。难点就在于需要采用极细的激光束,普通激光不能满足需求,实验室当中流行的办法是采用近场光。
这项技术理论上可以将存储密度提高到5Tbit/平方英寸,即传统垂直记录技术的存储密度极限的10倍,目前还处在基础研究阶段。
垂直/纵向技术对比
磁录密度的历史发展趋势
链接:IDC关于垂直记录的预测
2009年使用垂直记录技术的硬盘将达到六亿三千万部,成为雄霸市场的新技术。
到2008年,小型硬盘(2.5 英寸以下)将占据硬盘产量的46% 以上,其中大多数会利用垂直记录技术来满足容量需求。
对整个硬盘行业的发展进行预测,垂直记录将成为2004至2008 年达到IDC 预测的15.5% 年复合成长率的主要推动因素。
在5年内,产品磁盘密度将会达到目前技术下磁盘密度的4至5倍;在10年内,垂直记录(包括混合方法)会使磁盘密度达到目前技术下磁盘密度的10倍。